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Model Selection
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From PRML (Bishop, 2006)

Sometimes, we have to make high-level decisions about the model we

want to use:
» Number of components in a mixture model
» Network architecture of (deep) neural networks
» Type of kernel in a support vector machine

» Degree of a polynomial in a regression problem
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From PRML (Bishop, 2006)

» For each high-level choice, we get a different set of parameters

» Rule of thumb: More parameters = more flexible model

Model Selection Marc Deisenroth @AIMS, Rwanda, October 10, 2018



1 M=9

From PRML (Bishop, 2006)

» For each high-level choice, we get a different set of parameters

» Rule of thumb: More parameters = more flexible model

Problem

» At training time, we can only use the training data to evaluate the
performance of the model

» We are generally interested in the test performance, not so much
in the training performance
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Training vs Test Error

—©6— Training
—6— Test

From PRML (Bishop, 2006)

General problem:

» Model fits training data perfectly, but may not do well on test
data P> Overfitting (especially with MLE)
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From PRML (Bishop, 2006)

General problem:
» Model fits training data perfectly, but may not do well on test
data P> Overfitting (especially with MLE)
» Training performance # test performance, but we are mostly

interested in test performance

Model Selection Marc Deisenroth @AIMS, Rwanda, October 10, 2018



Training vs Test Error

—©6— Training
—6— Test
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From PRML (Bishop, 2006)

General problem:
» Model fits training data perfectly, but may not do well on test
data P> Overfitting (especially with MLE)
» Training performance # test performance, but we are mostly
interested in test performance
» Need mechanisms for assessing how a model generalizes to
unseen test data M Model selection
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Training vs Test Error (2)

L2 Train Accuracy Test Accuracy
100.0 50.51
1 layer MLP
v 99.80 50.39
100.0 52.39
3 layer MLP
v 100.0 53.35
100.0 76.07
Alexnet (CNN)
v 100.0 77.36
100.0 85.75
Inception (CNN++)
v 100.0 86.03

Zhang, Chiyuan; Bengio, Samy; Hardt, Moritz; Recht, Benjamin; Vinyals, Oriol. "Understanding deep learning requires
rethinking generalization”, ICLR 2017

From Y. Dauphin’s lecture at DL Indaba 2017

» What is suspicious here?
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Cross Validation

N

s N I B I W
1 0 0/ 08 £
] OO0 /|8 /| £
0 /0 /| /8 /d

XSG R VO [y O By Ny

v

Heuristic to estimate the generalization performance of a model

v

Partition your training data into K subsets

v

Train the model on K — 1 subsets

v

Evaluate the model on the other subset
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Cross-Validation (2)

» Cross-validation effectively computes an empirical
generalization error R on validation set V:

K
Z Vo)

» Ris aloss function (e.g., RMSE or NLL)

Ey[R(

N \

» To reduce variability, multiple rounds of cross-validation are
performed using different partitions, and the validation results

are averaged over the rounds.
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Cross-Validation (2)

» Cross-validation effectively computes an empirical
generalization error R on validation set V:

Ey[R(

N \

K
Z (f, V®)

» Ris aloss function (e.g., RMSE or NLL)

» To reduce variability, multiple rounds of cross-validation are
performed using different partitions, and the validation results
are averaged over the rounds.

» Train many models, compare test error
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Cross-Validation (2)

» Cross-validation effectively computes an empirical
generalization error R on validation set V:

Ey[R(

N \

K
Z (f, V®)

» Ris aloss function (e.g., RMSE or NLL)

» To reduce variability, multiple rounds of cross-validation are
performed using different partitions, and the validation results
are averaged over the rounds.

» Train many models, compare test error

Number of training runs increases with the number of partitions
Trivial to parallelize
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Information Criteria

» Add penalty term to MLE to compensate for the overfitting of
more complex models (with lots of parameters)
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Information Criteria

» Add penalty term to MLE to compensate for the overfitting of
more complex models (with lots of parameters)
» Maximize Akaike Information Criterion (Akaike 1974):

In P(waL) -M

where M is the number of model parameters
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Information Criteria

» Add penalty term to MLE to compensate for the overfitting of
more complex models (with lots of parameters)
» Maximize Akaike Information Criterion (Akaike 1974):

In P(waL) -M

where M is the number of model parameters
» AIC estimates the relative information lost by a given model
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Information Criteria

» Add penalty term to MLE to compensate for the overfitting of
more complex models (with lots of parameters)
» Maximize Akaike Information Criterion (Akaike 1974):
In P(waL) -M

where M is the number of model parameters
» AIC estimates the relative information lost by a given model
» Bayesian Information Criterion/MDL (Schwarz 1978) (for
exponential family distributions):

In p(x) — lnfp(x|9)p(9)d6 ~ In p(x]0yi) — %MlnN

where N is the number of data points and M is the number of

parameters.
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Information Criteria

» Add penalty term to MLE to compensate for the overfitting of
more complex models (with lots of parameters)
» Maximize Akaike Information Criterion (Akaike 1974):

In P(waL) -M

where M is the number of model parameters

» AIC estimates the relative information lost by a given model
» Bayesian Information Criterion/MDL (Schwarz 1978) (for
exponential family distributions):

In p(x) — lnfp(x|9)p(9)d6 ~ In p(x]0yi) — %MlnN

where N is the number of data points and M is the number of
parameters.

» BIC penalizes model complexity more heavily than AIC.
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Bayesian Model Comparison

» Place a prior p(M) on the class of models
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Bayesian Model Comparison

» Place a prior p(M) on the class of models

» Given a training set D, we compute the posterior distribution
over models as

p(Mi|D) o p(M;)p(D|M;)

which allows us to express a preference for different models
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Bayesian Model Comparison

» Place a prior p(M) on the class of models

» Given a training set D, we compute the posterior distribution
over models as

p(Mi|D) o p(M;)p(D|M;)

which allows us to express a preference for different models

» Model evidence (marginal likelihood):

p(DIM;) = f p(D63,) (B, | Mi) 6y,
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Bayesian Model Comparison

v

Place a prior p(M) on the class of models

v

Given a training set D, we compute the posterior distribution
over models as

p(Mi|D) o p(M;)p(D|M;)

which allows us to express a preference for different models

v

Model evidence (marginal likelihood):

p(DIM;) = f p(D63,) (B, | Mi) 6y,

v

Bayes factor for comparing two models: p(D|M;)/p(D|Ma)
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Bayesian Model Comparison

v

Place a prior p(M) on the class of models

v

Given a training set D, we compute the posterior distribution
over models as

p(Mi|D) o p(M;)p(D|M;)

which allows us to express a preference for different models

v

Model evidence (marginal likelihood):

p(DIM;) = f p(D63,) (B, | Mi) 6y,

» Bayes factor for comparing two models: p(D|M;)/p(D| M)

» Integral often intractable
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Bayesian Model Averaging

» Place a prior p(M) on the class of models

» Instead of selecting the “best” model, integrate out the
corresponding model parameters 8 and average over all
models M;,i=1,...,L

L
p(D) =Y p(M»f;a(DwMi)p(eM,Ml-)deM,.
i=1

:p<D‘M{)
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Bayesian Model Averaging

» Place a prior p(M) on the class of models

» Instead of selecting the “best” model, integrate out the
corresponding model parameters 8 and average over all
models M;,i=1,...,L

L
p(D) =Y p(M»f;a(DwMi)p(eM,Ml-)deM,.
i=1

:p<D‘M{)

» Computationally expensive

» Integral often intractable (still...)
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Occam’s Razor

From crowfly.net

» Favor simpler models over complicated ones
» Very expressive models may be a less probable choice for
modeling a given dataset
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crowfly.net

Occam’s Razor (2)

Evidence
p(DIM))
p(DIM))

C, b

From MacKay, ITILA (2003)

» Bayes’ theorem rewards models in proportion to how much they
predicted the data that occurred » Marginal likelihood
(assuming a uniform prior over models)

» Simple model can predict only a small number of datasets
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Occam’s Razor (2)

Evidence
p(D|\M,)
p(D|\M))

C, b

From MacKay, ITILA (2003)

» Bayes’ theorem rewards models in proportion to how much they
predicted the data that occurred » Marginal likelihood
(assuming a uniform prior over models)

» Simple model can predict only a small number of datasets

» Marginal likelihood automatically embodies Occam’s razor
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Summary
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Objective: Achieve good generalization performance

» Assess generalization performance if only training data is
available

» Cross validation
» Information criteria

» Occam’s razor: choose the simplest model that explains the data

» Bayesian model selection and importance of the marginal
likelihood
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