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» Whadda hell are ya doing here?

» Because | like things like these...

» My goal is the scientific study of the emergence of
distributed intelligence.

BEFORE WE START...
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:

THE MISSING PIECE IN PDP

» PDP says that computation can happen, but it doesn’t

explain how.

7177707777777 7777777777)

» Challenge: how can we describe the interaction between
many neurons when performing a computation?
» Information theory.



MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS
(] 0000 Q0 Q0 000

THE BASICS




MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS

(o} 0000 Q0 Q0 000
:

;;g\ Very important result/definition.

i Problem of interest.

Exercise. (Some optional, all recommended!)



MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS

(] ©000 Q0 00 000
:

WHAT IS INFORMATION?

In earlier times, information was identified with the objects that carried it.
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WHAT IS INFORMATION?

Also true for neural networks!

Rosenblatt holding the
weights of a perceptron.
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WHAT IS INFORMATION?

INFORMATION
SOURCE  TRANSMITTER RECEIVER  DESTINATION
] -
RECEIVED
SIGNAL
MESSAGE MESSAGE

NOISE
SOURCE

Information needs a communication protocol: a priori
agreement between sender and receiver.
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:

WHAT IS INFORMATION?
All developed in the seminal 1948 paper,

A Mathematical Theory of Communication

By Claude Shannon.
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GOAL OF INFORMATION THEORY

¥ . : o
i How can we achieve optimal communication through a
noisy channel?

Message Noise Message

ls ln Is
. x ) .
Encoding —»() Channel )—> Decoding
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PLAN FOR THESE LECTURES

1. Entropy and coding.

2. KL divergence and mutual information.
3. Links with statistics and maximum likelihood.

4. Research example.
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:

ENCODING EXAMPLE

Let’s find the shortest encoding for this message:

» Naive code: Symbol Probability
L L7
0010000111000001 . 1/2

B 1/4

» Huffman code: ] 1/8

B o Bl ooo 1/8

10011010001101
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:

ENCODING EXAMPLE

» Average code length:

Zp )L(x)

» Key idea: frequent symbols have shorter sequences.

» In particular, proportional to — log, p(x).
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:

ENTROPY
\;f Minimal description length for p(x) messages in bits:
H(X) = Zp )log, p(x)

What'’s the entropy of a random fair coin?
Discuss with your neighbour.
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:

ENTROPY
Bernoulli distribution: H(p) = —plog, p — (1 — p)log,(1 — p)

| | | |
0O 02 04 06 08 1
p
N . .
~< Entropy is a measure of uncertainty or randomness.
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ENTROPY

» Rank these distributions from highest to lowest entropy.

i 1F
P4 P2
0 0— T T
A B C D A B C D
i 1F
Ps P4
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JOINT ENTROPY

In addition, we can define these two quantities:

» Joint entropy:

H(X, Y) = =3 plx,y)log p(x, )
X,y

» Conditional entropy:

H(X|Y) =~ p(x,y)logp(xly)
Xy
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:

KULLBACK-LEIBLER DIVERGENCE

i What happens if we use the wrong code?

HEEE HE®
> Previous code: Symbol Assumed Real
B o1 B o000 X q(x) p(x)
0000010010100000100101 . 1/2 0
B 1/4 1/4
» New optimal code: . 1/8 1/2
M or W oo 1/8 1/4

001101001101
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:

KULLBACK-LEIBLER DIVERGENCE

NS . .
< Extra cost incurred if we use the wrong code.

Diw(pla) = 3 p(4) 109 "(X§

=—Zp )log, q(x) — —Zp ) log, p(x

Actual message length Optimal message length

Prove that Dk (p||q) =0 iff p = q.
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:

KULLBACK-LEIBLER DIVERGENCE

PROPERTIES

» KL divergence is non-negative:
Dxi(pllq) = 0
» The equality holds when p = q:
Dxi(pllg) =0 iff p=gq
» It is not symmetric:

Dxw(pllq) # DxL(qllp)
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:

KULLBACK-LEIBLER DIVERGENCE

» Calculate these KL divergences:

Dxi(Psl|P1)  Dxi(Pol|Pa)  Dxi(PallP2)  Dxi(Psl|Pa)

i 1
P4 P2
o ] [ [ [ 0—._—_-
A B C D A B C D
10 10
Ps Py
A I AN N
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:

SENDING INFORMATION

Message Noise Message

s ln s
) x Y .
Encoding —>() Channel )—» Decoding
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THE NOISY TYPEWRITER

» Input X is uniform distribution on N symbols.

» Need log, N bits to encode. \

» Symbols will be mixed by channel noise! \

» Can only send one of N/2 symbols \
without loss.

» Rate of transmission to Y is \

H(Y) — H(Y|X) = log, N — 1

N
= log, 5
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MUTUAL INFORMATION

\;’ How much does knowing X tell you about Y.

px.y)
I(X;Y)= x,y)log————"~ =H(Y) — HYX
(X:Y) XZy:P( Y109 ) ( .) ( I. )
? Uncertainty Uncertainty
about Y about Y
given X

What's the Ml of the binary symmetric channel?
Discuss with your neighbour.

Sender P Receiver
X p Y
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:

MUTUAL INFORMATION

» Ml is maximal when X and Y are identical and minimal when
they are independent.

More noise

>_‘_ Less
x information

\‘,// . . .
~u< Mlis a generalised measure of correlation.
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MUTUAL INFORMATION

PROPERTIES

» Ml is symmetric:
I(X;Y)=1IY; X)
» Ml is non-negative:
I(X;Y)>0 , I(X;Y)=0 iff XY
» Ml is a KL divergence:

I(X;Y) = Dxv (p(x, y)llp(x)p(y))

26
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RECAP

v Entropy measures uncertainty or randomness.

v KL divergence measures differences between distributions.

v~ Ml measures correlation between variables.
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MORE EXAMPLES

\@( Calculate the following:

1. H(X)
p(x,y) x=0 x=1
2. HX, Y) y=0 01 0
y=1 01 03
3. 1(X;Y) y=2 03 02

4. Dir(p(x)llp(y))

28
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CONTINUOUS VARIABLES
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:

CONTINUOUS VARIABLES

So far, we've used discrete variables only...
But in ML we use RP!

i Can we extend these definitions to continuous
variables?

29
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ENTROPY IN R

» We have a variable X € R with pdf f(x).
» We use bins of width A to get a discrete variable X2 with

(i+1)A
pi = / f(x)dx = f(x;)A
in

Now we take H(X%?) as A — O:
H(X®) == pilogpi
= _ Z f(xi))Alog(f(x;)A)
- _ Z Af(x;)log f(x;) — log A

Riemann integral =~ Divergent term
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:

DIFFERENTIAL ENTROPY

Ignoring the log A, we get the formula for differential entropy:

H(X) = —/f(x) log f(x)dx

“4° Differential entropy is not a “real” entropy!
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:

MUTUAL INFORMATION IN R

Magically, for Ml the divergent terms cancel out, and...

» Continuous Ml is actually a real Ml!
\\,‘//
“o Summary:

v~ Ml in continuous variables is interpretable.

X Entropy in continuous variables is not.
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NEURODYNAMICS

MI INVARIANCE

E};f Ml is invariant to invertible mappings.
I(U; V)=1(X;Y) where U=f(X),V=g(Y)

if f and g are smooth and invertible.

Prove this result.

Tip: Use the fact that densities transform as p(u, v) = |J|p(x, y), with
J the appropriate Jacobian, and the Jacobian is block-diagonal.

33



MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS

(o} 0000 e Q0 000
:

ENTROPY IN GAUSSIAN DISTRIBUTIONS

Let’s calculate the entropy of a Gaussian p(x) = NV (x|u, X):

00
H(X)=— N(x|p, ) log N (X, X)dx

J —0o0

= %E[Iog 27| + %E[(x ) E (x = p)]

= %Iog |2rX| + %E[(X — ) = (x = )]
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:

ENTROPY IN GAUSSIAN DISTRIBUTIONS
For the second term:
Bt (= p) = (=) | =t (E7E [(x = w)(x = )]
—tr(=7'x)
=D

Overall:

1
H(X) = > log |2 eX]|

\‘// . . .
< Information measures have analytical solutions for
Gaussian distributions.
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:

INFORMATION IN GAUSSIAN DISTRIBUTIONS

Given that the entropy of a Gaussian N (x|u, X) is:

H(X) = %Iog |2reX|

What’s the mutual information between two Gaussians?

Discuss with your neighbour.
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MI IN GAUSSIAN DISTRIBUTIONS

I(X: ¥) =~ Tog(1 — 47)

‘ Mutual information ‘

0 02 04 06 08 1
Correlation p
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KL IN GAUSSIAN DISTRIBUTIONS

o+ (m—pe)® 1
US 2

Dxr(p1(x)llp2(x)) = log Z—? n

— Ap— 6 || KL divergence

VANWAN

0O 02 04 06 08 1

38



MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS

(] 0000 o® 00 000
:

LOTS OF OTHER STUFF!

David J.C. MacKay

Information Theory, Inference,
and Learning Algorithms

» Data processing inequalities.

» Rate-distortion theories.

» Error-correcting codes.

Cambridge University Press, 2003
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MOTIVATION
o

THE BASICS CONTINUOUS VARIABLES STATISTICS
0000 Q0 00

NEURODYNAMICS

000

All that encoding was ok, but...

What’s the point?

Statistical interpretation of
information theory

40
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ENTROPY AND LIKELIHOOD

v

Assume we have data x; € RP generated from p*(x).

v

Take family of models p € P = {p(-|6) : 6 € RM}.

v

Assume there exists a 6* such that p(x|6*) = p*(x).

Consider maximum-likelihood estimator
O\, = argmax E[p(x|0)]. Then:
0

v

Eflog p(x|6m1)] = E[log p(x|67)] = —H[p*(x)]
\;\g{ Entropy is the negative log-likelihood of the best model!
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ENTROPY AND LIKELIHOOD

Sketch of a proof:

Dxi(p*(x)llp(x]6)) = O
\
~Eflogp(x]0)] > —E[logp*(x)]
\
—Eflogp(x[0)] > Hlp*(x)]

1. If p* € P, the maximum is achieved iff p(:|@) = p*(-) and
therefore E[log p(x|6wm1)] = —H[p*(x)].

2. If p* ¢ P, the margin between the MLE and the true model
is D.(p*(x)lP(x|6mL)) > O.
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ENTROPY AND LIKELIHOOD

» Another derivation:

Dk (p"(x)[|p(x]0)) = — H[p*(x)] — E[logp(x|6)]
——— —_———
Doesn’t depend on 6 Likelihood

argemin Dxc(p™ (x)[Ip(x|0)) = argmax Eflog p(x|6)]
» To show that E[log p(x|0)] is the normal likelihood, consider
dataset x1,..., Xy ~ p*(X):

N
Ellogp(x|o)] = [ p"(x)logp(xi0)dx ~ 1>~ logp(x]0)

Sampling
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ENTROPY AND LIKELIHOOD

\;’ Maximising likelihood is equivalent to minimising KL!

O\ = argmax E[p(x|0)]
0

6. = argmin D (0°(x) o(x19))
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MODEL SELECTION
%L Are variables X and Y statistically independent?

M, (full): M, (restricted):

p(x,y) p(x) p(y)
p(¥|x) —— Full model

Restricted
p (y ) model

I(X;Y)= / dx dy p(x,y)log

\;’ I(X; Y) > 0iff My explains the data better than M.
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MUTUAL INFORMATION AND CORRELATION

In non-Gaussian distributions, Ml acts as a generalised correlation.

-0.4 -1
-1 -1 -1
— S~ N
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RECAP

v Entropy functionals (MI, KL) arise from optimal

communication principles.

v Alternative interpretation in terms of likelihood.

v All that’s left is specifying a model p(x|6).
— Sampling and density estimation.
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PSYCHEDELICS AND HALLUCINOGENICS
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PSYCHEDELICS AND HALLUCINOGENICS

» Psychedelics affect the serotonergic system.

» Safest among common recreational drugs.

70

60+

50+

40+

Overall harm score

30+

20+

10

NH,

HO

I Harm to others (CW 54)
I Harm to drug user (CW 46)

(Nutt et al. 2010)

49



MOTIVATION THE BASICS CONTINUOUS VARIABLES STATISTICS NEURODYNAMICS

(o} 0000 Q0 Q0 ©00
:

PSYCHEDELIC PHENOMENOLOGY

» Onset of audiovisual hallucinations.
» “With eyes closed, | saw geometric patterns.”

» Distortion of self models.
» “l experienced a disintegration of my ’'self’ or ‘ego’”

» Increased cognitive flexibility.
» “My thoughts wandered freely.

i How does LSD alter information processing in the brain?
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THE DATA

» High-frequency magnetoencephalographic (MEG) data.

Channels

" wﬁu« e %%F;%M b
e Cp® el W S
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BRAIN ENTROPY

» Entropy estimator for sequential
data known as Lempel-Ziv.

» Calculate average entropy of
cortical surface.

\Q‘f Under LSD, brain has much

H . I Placebo
higher entropy than usual.  LSD
0.93 . '
5@66*65 “\\)6\0 Qe(\e\‘es NS
o° (e)

(Marchesi & Mediano 2016)
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THE ENTROPIC BRAIN

frontiers in HYPOTHESIS AND THEORY ARTICLE %
blished: 03 Feb: 2014
HUMAN NEUROSCIENCE oi 10,3986 inhum 201400020

The entropic brain: a theory of conscious states informed
by neuroimaging research with psychedelic drugs

Robin L. Carhart-Harris'*, Robert Leech?, Peter J. Hellyer?, Murray Shanahan?®, A da Feilding*,
Enzo Tagliazucchi®, Dante R. Chialvo® and David Nutt’

! Division of Brain Sciences, Department of Me , Centre for Neurop: arr , Imperial College London, London, UK
2 C3NL, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK

3 Department of Computing, Imperial College London, London, UK

* The Beckley Foundation, Beckley Park, Oxford, UK

° Neurology Department and Brain Imaging Center, Goethe University, Frankfurt am Main, Germany

¢ Consejo Nacional de Investigaciones Cientificas y Tecnolégicas (CONICET), Buenos Aires, Argentina
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CONNECTIVITY INFERENCE

" O ===
CF— (= —(F—()

L O—EO—0—0—0
O

» Evidence for connected model My over M5 is:

P(Yi1lYte, Xt)
10X Y, Y:/x,, log PYEc11Ye: Xt)
(Xt; Yir1| Y1) p(Xt, ¥t, Yi+1) log o170
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CONNECTIVITY INFERENCE

i Two problems with this:
1. Compute integral | p(w;)f(w:)dw:, where w; = {x, yr, Y41}
2. Evaluate likelihoods p(yi+1|yt, Xt), p(Vt+1]Yt)-

Solution 1: sampling!

/(!)\
, X
10X Yiea i) = / p(wy)log PV X0) gy,
(}’t+1 )
= (yt+1 ¥i)

N
i< Solution 2: probabilistic regression!

1. Predict y;1 from y;. Check if (2) is
2. Predict y;,1 from both y; and x;. better than (1)
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BRAIN NETWORKS

Algorithm: lterative network inference.
Data: Set of brain regions R

for Y ¢ Rdo
Initialise pa(Y) = @
while maxy I(X:; Yi+1]Ye, pa(Y):) > 0do
| pa(Y) < pa(Y) Uargmaxy I(Xs; Yer1| Vi, pa(Y)1)

end

end

Placebo
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GLOBAL CONNECTIVITY

» Count total number of significant connections.

\é,’ Under LSD, the brain is more interconnected than usual.

0 BN Placebo
%] LSD
C
_g 40
(8]

(0]
=
5 20
(&)
0
Subjects

(Marchesi & Mediano 2016)
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TRANSIENT NETWORK DISSIMILARITY

» Build transient networks Ny, Ny, . .. ‘

» How quickly do they change? 3
E 0.35 —_—
» Transient Network Dissimilarity (TND), ~
average number of “rewirings:” 030 '
]E |:|Nti B Nti+1 |] 02 Placebo LSD

\g’ Under LSD, brain connectivity changes faster than usual.
» Metastability.
(Marchesi & Mediano 2016)
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:

CONCLUSION
v Information theory uses probability to study optimal
communication.
v There is an alternative statistical interpretation of IT.
v~ We can combine ML and IT to study complex systems.

v~ Under LSD, the brain is more interconnected, more
metastable, and more entropic.

Thank you for listening!
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