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Reading Material

Bishop: Pattern Recognition and Machine Learning, Chapter 8
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Probabilistic Models

§ Quantity of interest: Joint distribution of all observed and
unobserved (latent) random variables

Probabilistic model

§ Comprises information about the prior, the likelihood and the
posterior

§ Joint distribution itself can be complicated

§ Does not tell us anything about structural properties of the
probabilistic model (e.g., factorization, independence)

Probabilistic graphical models
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Probabilistic Graphical Models

a b

c

a b

c

a b
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Three types of probabilistic graphical models:
§ Bayesian networks (directed graphical models)
§ Markov random fields (undirected graphical models)
§ Factor graphs

§ Nodes: (Sets of) random variables
§ Edges: Probabilistic/functional relations between variables
Graph captures the way in which the joint distribution over all

random variables can be decomposed into a product of factors
depending only on a subset of these variables
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Why are they useful?

§ Simple way to visualize the structure of a probabilistic model

§ Insights into properties of the model (e.g., conditional
independence) by inspection of the graph

§ Can be used to design/motivate new models

§ Complex computations for inference and learning can be
expressed in terms of graphical manipulations
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Importance of Visualization

From Kim et al. (NIPS, 2015)

From Kim et al. (NIPS, 2015)
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Bayesian Networks (Directed Graphical Models)
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Directed Graphical Models

a

e

d

b

c

§ Nodes: Random variables

§ Shaded nodes: Observed

§ Unshaded nodes: Unobserved (latent)

§ Directed arrows from a to b: Conditional distribution ppb|aq.
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From Joints to Graphs

Consider the joint distribution

ppa, b, cq “ ppc|a, bqppb|aqppaq

Building the corresponding graphical model:

1. Create a node for all random variables

2. For each conditional distribution, we add a directed link (arrow)
to the graph from the nodes corresponding to the variables on
which the distribution is conditioned on

a b

c

Graph layout depends on the choice of factorization
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From Graphs to Joints

x1 x2

x3 x4

x5

§ Joint distribution is the product of a set of conditionals, one for
each node in the graph

§ Each conditional is conditioned only on the parents of the
corresponding node in the graph

ppx1, x2, x3, x4, x5q “ ppx1qppx5qppx2|x5qppx3|x1, x2qppx4|x2q

In general: ppxq “ ppx1, . . . , xKq “
śK

k“1 ppxk|parentspxkqq
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Graphical Model for Linear Regression

x

t

0 1

−1

0
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From PRML (Bishop, 2006)

We are given a data set
px1, y1q, . . . , pxN , yNqwhere

yi “ f pxiq ` ε, ε „ N
`

0, σ2˘

with f unknown.
Find a (regression) model that

explains the data

§ Consider polynomials f pxq “
řM

j“0 wjxj with parameters
w “ rw0, . . . , wMs

J.

§ Bayesian linear regression: Place a conjugate Gaussian prior on
the parameters: ppwq “ N

`

0, α2I
˘

Graphical Models Marc Deisenroth @AIMS, Rwanda, October 2, 2018 11



Graphical Model for Linear Regression

x

t

0 1

−1

0

1

From PRML (Bishop, 2006)

We are given a data set
px1, y1q, . . . , pxN , yNqwhere

yi “ f pxiq ` ε, ε „ N
`

0, σ2˘

with f unknown.
Find a (regression) model that

explains the data

§ Consider polynomials f pxq “
řM

j“0 wjxj with parameters
w “ rw0, . . . , wMs

J.

§ Bayesian linear regression: Place a conjugate Gaussian prior on
the parameters: ppwq “ N

`

0, α2I
˘

Graphical Models Marc Deisenroth @AIMS, Rwanda, October 2, 2018 11



Graphical Model for Linear Regression
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t
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From PRML (Bishop, 2006)

ppy|xq “ N
`

y | f pxq, σ2˘

f pxq “
M
ÿ

j“0

wjxj

ppwq “ N
`

0, α2I
˘

w

y1 yN

w

yn
N

w

yn
N

xn

α

σ
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Conditional Independence

a b

c

a KK b|c ðñ ppa|b, cq “ ppa|cq
ðñ ppa, b|cq “ ppa|cqppb|cq

§ (Conditional) independence allows for a factorization of the joint
distribution More efficient inference

§ Conditional independence properties of the joint distribution can
be read directly from the graph

§ No analytical manipulations required.
d-separation (Pearl, 1988)
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D-Separation (Directed Graphs)

A
C

B

Directed, acyclic graph in which A, B, C
are arbitrary, non-intersecting sets of
nodes. Does A KK B|C hold?
Note: C is observed if we condition on it
(and the nodes in the GM are shaded)

Consider all possible paths from any node in A to any node in B.
Any such path is blocked if it includes a node such that either

§ Arrows on the path meet either head-to-tail or tail-to-tail at the
node, and the node is in the set C or

§ Arrows meet head-to-head at the node and neither the node nor
any of its descendants is in the set C

If all paths are blocked, then A is d-separated from B by C, and the
joint distribution satisfies A KK B|C.
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Example

a

e

d

b

c

(a) a KK b|c?

a

e

d

b

c

(b) a KK b|d?

A path is blocked if it includes a node such that either

§ The arrows on the path meet either head-to-tail or tail-to-tail at
the node, and the node is in the set C (observed) or

§ The arrows meet head-to-head at the node, and neither the node
nor any of its descendants is in the set C (observed)
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Markov Random Fields (Undirected Graphical Models)
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Markov Random Fields

a b

c
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Joint Distribution

a

b

c

d

a

b

c

d

§ Express joint distribution ppx1, . . . , xnq “: ppxq as a product of
functions defined on subsets of variables that are local to the
graph

§ If xi, xj are not connected directly by a link then xi KK xj|xztxi, xju

(conditionally independent given everything else)
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Factorization of the Joint Distribution

§ If xi KK xj|xztxi, xju then xi, xj never appear in a common factor in
the factorization of the joint

Joint distribution as a product of cliques (fully connected
subgraphs)

§ Define factors in the decomposition of the joint to be functions of
the variables in (maximum) cliques:

ppxq9
ź

C
ψCpxCq

Example: ppa, b, c, dq9ψ1pa, bqψ2pb, c, dq

a

b

c

d

a

b

c

d
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Factorization of the Joint Distribution

ppxq “
1
Z

ź

C

ψCpxCq

§ C: maximal clique

§ xC: all variables in this clique

§ ψCpxCq: clique potential

§ Z “
ř

x
ś

C ψCpxCq: normalization constant
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Clique Potentials

ppxq “
1
Z

ź

C

ψCpxCq

Clique potentials ψCpxCq:

§ ψCpxCq ě 0

§ Unlike directed graphs, no probabilistic interpretation necessary
(e.g., marginal or conditional).

§ If we convert a directed graph into an MRF, the clique potentials
may have a probabilistic interpretation
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Normalization Constant

ppxq “
1
Z

ź

C

ψCpxCq

§ Gives us flexibility in the definition the factorization in an MRF

§ Normalization constant (also: partition function) Z is required for
parameter learning (not covered in here)

§ In a discrete model with M discrete nodes each having K states,
the evaluation Z requires summing over KM states

Exponential in the size of the model

§ In a continuous model, we need to solve integrals
Intractable in many cases

Major limitation of MRFs
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Conditional Independence

A
C

B

Two easy checks for conditional independence:

§ A KK B|C if and only if all paths from A to B pass through C.
(Then, all paths are blocked)

§ Alternative: Remove all nodes in C from the graph. If there is a
path from A to B then A KK B|C does not hold
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Potentials as Energy Functions

§ Look only at potential functions with ψCpxCq ą 0
ψCpxCq “ expp´EpxCqq for some energy function E

§ Joint distribution is the product of clique potentials
Total energy is the sum of the energies of the clique potentials
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Example: Image Restoration

From PRML (Bishop, 2006)

§ Binary image, corrupted by 10% binary noise (pixel values flip
with probability 0.1).

§ Objective: Restore noise-free image
Pairwise MRF that has all its variables joined in cliques of size 2
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Image Restoration (2)

xi

yi

§ MRF-based approach

§ Latent variables xi P t´1,`1u are the binary noise-free pixel
values that we wish to recover

§ Observed variables yi P t´1,`1u are the noise-corrupted pixel
values
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Clique Potentials

xi

yi

Two types of clique potentials:

§ log ψxypxi, yiq “ Epxi, yiq “ ´ηxiyi , η ą 0
Strong correlation between observed and latent variables

§ log ψxxpxi, xjq “ Epxi, xjq “ ´βxixj , β ą 0
for neighboring pixels xi, xj

Favor similar labels for neighboring pixels (smoothness prior)
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Energy Function

Total energy:

Epx, yq “ ´η
ÿ

i

xiyi

loooomoooon

latent-observed

´β
ÿ

ti,ju

xixj

looooomooooon

latent-latent

`γ
ÿ

i

xi

loomoon

bias

§ Bias term places a prior on the latent pixel values, e.g., `1.

§ Joint distribution ppx, yq “ 1
Z expp´Epx, yqq

§ Fix y-values to the observed ones Implicitly define ppx|yq

§ Example of an Ising model Statistical physics
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ICM Algorithm for Image Restoration

Noise-corrupted image, ICM, Graph-cut (From PRML (Bishop, 2006))

Iterated Conditional Modes (ICM, Kittler & Föglein, 1984)

1. Initialize all xi “ yi

2. Pick any xj: Evaluate total energy
Epxzj Y t`1u, yq, Epxzj Y t´1u, yq

3. Set xj to whichever state (˘1) has the lower energy

4. Repeat
Local optimum
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Relation to Directed Graphs

a b

c d

c

a b

P
UD

§ Directed and undirected graphs express different conditional
independence properties

§ Left: a KK b|H, a zKK b|c has no MRF equivalent

§ Center: a zKK b|H, c KK d|aY b, a KK b|cY d has no Bayesnet
equivalent
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Factor Graphs

Good references:

Kschischang et al.: Factor Graphs and the Sum-Product Algorithm.
IEEE Transactions on Information Theory (2001)

Loeliger: An Introduction to Factor Graphs. IEEE Signal Processing
Magazine, (2004)
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Factor Graphs

a b

c

§ (Un)directed graphical models express a global function of
several variables as a product of factors over subsets of those
variables

§ Factor graphs make this decomposition explicit by introducing
additional nodes for the factors themselves.
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Factorizing the Joint

The joint distribution is a product of factors:

ppxq “
ź

s
fspxsq

§ x “ px1, . . . , xnq

§ xs: Subset of variables
§ fs: Factor; non-negative function of the variables xs

§ Building a factor graph as a bipartite graph:
§ Nodes for all random variables (same as in (un)directed graphical

models)
§ Additional nodes for factors (black squares) in the joint

distribution

§ Undirected links connecting each factor node to all of the variable
nodes the factor depends on
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Example

x1 x2 x3

fa fb fc fd

ppxq “ fapx1, x2q fbpx1, x2q fcpx2, x3q fdpx3q

Efficient inference algorithms for factor graphs (e.g., sum-product
algorithm, see Appendix for more information)
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Applications of Inference in Graphical Models

§ Ranking: TrueSkill (Herbrich et al., 2007)

§ Computer vision: de-noising, segmentation, semantic labeling, ...
(e.g., Sucar & Gillies, 1994; Shotton et al., 2006; Szeliski et al., 2008)

§ Coding theory: Low-density parity-check codes, turbo codes, ...
(e.g., McEliece et al., 1998)

§ Linear algebra: Solve linear equation systems (Shental et al., 2008)

§ Signal processing: Iterative state estimation (e.g., Bickson et al.,

2007; Deisenroth & Mohamed, 2012)
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Appendix
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MRF Ñ Factor Graph

1. Take variable nodes from MRF

2. Create additional factor nodes corresponding to the maximal
cliques xs

3. The factors fspxsq equal the clique potentials

4. Add appropriate links
Not unique

Graphical Models Marc Deisenroth @AIMS, Rwanda, October 2, 2018 37



Directed Graph Ñ MRF

§ Moralization:
§ Add additional undirected links between all pairs of parents for

each node in the graph
§ Drop arrows on original links

§ Identify (maximum) cliques

§ Initialize all clique potentials to 1

§ Take each conditional distribution factor in the directed graph,
multiply it into one of the clique potentials
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Example: MRF Ñ Factor Graph

x1 x2

x3

x1 x2

x3

x1 x2

x3

f fa
fb

§ MRF with clique potential ψpx1, x2, x3q

§ Factor graph with factor f px1, x2, x3q “ ψpx1, x2, x3q

§ Factor graph with factors, such that
fapx1, x2, x3q fbpx2, x3q “ ψpx1, x2, x3q
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Directed Graphical Model Ñ Factor Graph

1. Take variable nodes from Bayesian network

2. Create additional factor nodes corresponding to the conditional
distributions

3. Add appropriate links
Not unique
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Example: Directed Graph Ñ Factor Graph

x1 x2

x3

x1 x2

x3

x1 x2

x3

f fc
fbfa

§ Directed graph with factorization ppx1qppx2qppx3|x1, x2q

§ Factor graph with factor f px1, x2, x3q “ ppx1qppx2qppx3|x1, x2q

§ Factor graph with factors fa “ ppx1q, fb “ ppx2q, fc “ ppx3|x1, x2q
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Removing Cycles

x1 x2

x3 x1 x2

x3

f (x1, x2, x3)
x1 x2

x3

§ Local cycles in an (un)directed graph (due to links connecting
parents of a node) can be removed on conversion to a factor
graph
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Sum-Product Algorithm for Factor Graphs

§ Factor graphs give a uniform treatment to message passing
§ Two different types of messages:

§ Messages µxÑ f pxq from variable nodes to factors
§ Messages µ fÑxpxq from factors to variable nodes

§ Factors transform messages into evidence for the receiving node.
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Variable-to-Factor Message

xm

f1

fK

µxm→fs(x)

fs

µ fK
→
xm
(x
m
)

µ
f
1→
x
m (x

m )

µxmÑ fspxmq “
ź

lPnepxmqz fs

µ flÑxmpxmq

§ Take the product of all incoming messages along all other links
§ A variable node can send a message to a factor node once it has

received messages from all other neighboring factors
§ The message that a node sends to a factor is made up of the

messages that it receives from all other factors.
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Factor-to-Variable Message

x1

xM

x
µfs→x(x)

fsfs
µ xM

→f
s
(x

M
)

µ
x
1→
f
s (x

1 )

µ fsÑxpxq “
ÿ

x1

¨ ¨ ¨
ÿ

xM

fspx, x1, . . . , xMq
ź

mPnep fsqzx

µxmÑ fspxmq

§ Take the product of the incoming messages along all other links
coming into the factor node

§ Multiply by the factor associated with that node
§ Marginalize over all of the variables associated with the

incoming messages
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Initialization

§ If the leaf node is a variable nodes, initialize the corresponding
messages to 1:

µxÑ f pxq “ 1

§ If the leaf node is a factor node, the message should be

µ fÑxpxq “ f pxq
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Example (1)

x1 x2 x3

x4

fa fb

fc

From PRML (Bishop, 2006)

µx1Ñ fapx1q “ 1

µ faÑx2px2q “
ÿ

x1

fapx1, x2q ¨ 1

µx4Ñ fcpx4q “ 1

µ fcÑx2px2q “
ÿ

x4

fcpx2, x4q ¨ 1

µx2Ñ fbpx2q “ µ faÑx2px2qµ fcÑx2px2q

µ fbÑx3px3q “
ÿ

x2

fbpx2, x3qµx2Ñ fbpx2q
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Example (2)

x1 x2 x3

x4

fa fb

fc

From PRML (Bishop, 2006)

µx3Ñ fbpx3q “ 1

µ fbÑx2px2q “
ÿ

x3

fbpx2, x3q ¨ 1

µx2Ñ fapx2q “ µ fbÑx2px2qµ fcÑx2px2q

µ faÑx1px1q “
ÿ

x2

fapx1, x2qµx2Ñ fapx2q

µx2Ñ fcpx2q “ µ faÑx2px2qµ fbÑx2px2q

µ fcÑx4px4q “
ÿ

x2

fcpx2, x4qµx2Ñ fcpx2q
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Marginals

x

f1

fK

µx←fs(x)

fs
µ fK
→
x
(x
)

µ
f
1→
x (x)

For a single variable node the marginal is given as the product of all
incoming messages:

ppxq “
ź

fiPnepxq

µ fiÑxpxq
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