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Motivation

3-dimensional representation of 18-dimensional motion capture data (Deisenroth & Mohamed, 2012)

§ High dimensional real data often possesses a lower intrinsic
dimensionality Easier to work with

§ Dimensionality reduction: Find this lower dimensional
representation

§ Visualization
§ Data compression
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Key Idea of Dimensionality Reduction

§ Project data onto a lower-dimensional manifold that preserves as
much information as possible

§ Think of it as data compression
§ Principal Component Analysis (PCA): Find a (linear) projection

that
§ Minimizes reconstruction error (Pearson, 1901)
§ Maximizes the variance (signal) of the projected data (Hotelling,

1933)
§ Maximize the mutual information between original and projected

data (Linsker 1988)
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Illustration: Orthogonal Projection

x2

x1

xn

x̃n

u1

From PRML (Bishop, 2006)

§ Two-dimensional data x “ rx1, x2s
J projected onto a

one-dimensional linear manifold (affine subspace) with direction
u1.

§ Red: Original data, Green: Projected data
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Refresher: Orthogonal Projection onto
Sub-Vectorspaces

§ Basis u1, . . . , uM of a subspace A Ă RD

§ Define U “ ru1|...|uMs P R
DˆM

§ Project x P RD onto subspace A:

UpUJUq´1UJx

§ If u1, . . . , uM form an orthonormal basis (uJi uj “ δij), then the
projection simplifies to

UUJx
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How to do it...

§ Objective: Find orthogonal projection that minimizes the overall
projection error

J “
1
N

N
ÿ

n“1

}xn ´ x̃n}
2

where x̃n is the projection of xn
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Derivation (1)

§ Define orthonormal basis of RD “ ru1, . . . , uDs, such that
uJi uj “ δij

§ Then, every data point xn can be written as a linear combination
of the basis vectors:

xn “

D
ÿ

i“1

αniui

Rotation of the standard coordinates to a new coordinate
system defined by the basis ru1, . . . , uDs.

Original coordinates xni are replaced by αni, i “ 1, . . . , D
§ Exploit orthonormality of ui and obtain αnj “ xJn uj, such that

xn “

D
ÿ

i“1

pxJn uiqui
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Derivation (2)

Objective
Approximate

xn “

D
ÿ

i“1

pxJn uiqui

using a M ! D many basis vectors
Projection onto a lower-dimensional subspace

§ Lower-dimensional subspace of dimension M can be represented
by M ! D basis vectors, such that

x̃n “

M
ÿ

i“1

zniui

looomooon

lower-dim. subspace

`

D
ÿ

i“M`1

biui

loooomoooon

rest
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Derivation (3)

x̃n “

M
ÿ

i“1

zniui

looomooon

lower-dim. subspace

`

D
ÿ

i“M`1

biui

loooomoooon

rest

§ Choose zni, ui, bi such that the squared reconstruction error

J “
1
N

N
ÿ

n“1

}xn ´ x̃n}
2

is minimized
Compute gradients of J w.r.t. all variables
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Derivation (4)

Necessary condition for optimum:

B J
Bzni

“ 0 ñ zni “ xJn ui , i “ 1, . . . , M

B J
Bbi

“ 0 ñ bi “ ErxsJui , i “ M` 1, . . . , D

Then, the approximation error only plays a role in dimensions
M` 1, . . . , D:

xn ´ x̃n “

D
ÿ

i“M`1

`

pxn ´ErxsqJui
˘

ui

Displacement vector xn ´ x̃n lies in space orthogonal to the
principal subspace (linear combination of the ui for i “ M` 1, . . . , D)

Minimum error is given by the orthogonal projection of xn onto the
principal subspace spanned by u1, . . . , uM
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Derivation (5)

From the previous slide:

xn ´ x̃n “

D
ÿ

i“M`1

pxJn ui ´ErxsJuiqui

Let’s compute our reconstruction error:

J “
1
N

N
ÿ

n“1

}xn ´ x̃n}
2 “

1
N

N
ÿ

n“1

pxn ´ x̃nq
Jpxn ´ x̃nq

“
1
N

N
ÿ

n“1

D
ÿ

i“M`1

pxJn ui ´ErxsJuiq
2

“

D
ÿ

i“M`1

uJi Sui

where S “ 1
N
řN

n“1pxn ´Erxsqpxn ´ErxsqJ is the data covariance
matrix
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Derivation (6)

§ What remains: Minimize J w.r.t. ui under the constraint that the
ui form an orthonormal basis.

Example:
§ M “ 1, D “ 2
§ Choose basis vector u2 such that uJ2 Su2 is minimized and

uJ2 u2 “ 1
§ Constrained optimization yields (with Lagrange multiplier)

J̃ “ uJ2 Su2 ` λp1´ uJ2 u2q

ñ
B J̃
Bu2

“ 0 ô Su2 “ λu2

§ Eigenvalue problem
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Derivation (7)

§ In general (arbitrary D and M ă D), we need solve

Sui “ λiui , i “ 1, . . . , D

which requires finding the eigenvectors ui of the data covariance
matrix S

§ Corresponding value of the squared reconstruction error:

J “
D
ÿ

i“M`1

λi

i.e., the sum of the eigenvalues associated with eigenvectors not
in the principle subspace

§ Minimizing J requires us to choose the M eigenvectors as the
principle subspace that are associated with the M largest
eigenvalues.
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Geometric Interpretation

§ Objective: Project x onto an affine subspace µ` ru1s.
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Geometric Interpretation

§ Shift scenario to the origin (affine subspace subspace)
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Geometric Interpretation

§ Shift x as well (onto x´ µ).
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Geometric Interpretation

§ Orthogonal projection of x´ µ onto subspace spanned by u1
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Geometric Interpretation

§ Move projected point πU1pxq back into original (affine) setting.
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Algorithm

1. Compute the mean µ of the data matrix X “ rx1|....|xNs
J P RNˆD

2. Mean normalization: Replace all data points xi with x̄i “ xi ´ µ.

3. Compute the eigenvectors and eigenvalues of the data covariance
matrix S “ 1

N X̄JX̄

4. Choose the eigenvectors associated with the M largest
eigenvalues to be the basis of the principal subspace.

5. Collect these eigenvectors in a matrix U “ ru1, ..., uMs

6. Projected vector (in affine setting): UUJpx´ µq ` µ
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Example 1

2 0 2 4 6 8 10
0
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5
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7
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Example 2

§ Transform images into vectors

§ Perform PCA Compression/dimensionality reduction to
extract low-dimensional features

§ Use these features for face recognition
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PCA for High-Dimensional Data

§ Fewer data points than dimensions, i.e., N ă D.

§ At least D´ N ` 1 eigenvalues 0.

§ Computation time for computing eigenvalues of S: OpD3q

§ Rephrase PCA
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Reformulating PCA

§ Define X to be the N ˆD dimensional centered data matrix,
whose nth row is pxn ´ErxsqJ Mean normalization

§ Corresponding covariance: S “ 1
N XJX

§ Corresponding eigenvector equation:

Sui “ λiui ô
1
N

XJXui “ λiui

§ Transformation (left-multiply by X):

1
N

XJXui “ λiui ô
1
N

XXJ Xui
loomoon

“:vi

“ λi Xui
loomoon

“:vi

vi is an eigenvector of the N ˆ N-matrix 1
N XXJ, which has the

same eigenvalues as the original covariance matrix.
Get eigenvalues in OpN3q instead of OpD3q.
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Recovering the Original Eigenvectors

§ The new eigenvalue/eigenvector equation is

1
N

XXJvi “ λivi

where vi “ Xui

§ We want to recover the original eigenvectors ui of the data
covariance matrix S “ 1

N XJX

§ Left-multiply eigenvector equation by XJ yields

1
N

XJX
looomooon

“S

XJvi “ λiXJvi

and we recover XJvi as an eigenvector of S with eigenvalue λi
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Example 3

mean principal basis 1

principal basis 2 principal basis 3

reconstructed with 2 bases reconstructed with 10 bases

reconstructed with 100 bases reconstructed with 506 bases

From “Machine Learning, A Probabilistic Perspective” (Murphy, 2012)

§ 25 images of MNIST hand-written digits data set
§ Left: Vectors of the eigenbasis
§ Right: Reconstructions of the original digit
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Interpretations of PCA

§ Minimum reconstruction error (this course, Bishop, 12.1.2)

§ Maximum variance of the data (Bishop, 12.1.1)

§ Maximum mutual information between original and projected
data

§ Latent variable model where the latent variable is the
low-dimensional representation of the data (probabilistic PCA,
Bishop, 12.2)
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Probabilistic PCA

xn

zn W

µ σ2
n = 1, ..., N

x “ Wz` µ` ε

z „ N
`

0, I
˘

ε „ N
`

0, σ2I
˘

§ Find parameters W , µ, σ2 via maximum likelihood
§ Integrate out the latent variable z, and obtain

ppxq “
ż

ppx|zqppzqdz “ N
`

x | µ, C
˘

C “ WWJ ` σ2I

§ Posterior on low-dimensional latent variable:

ppz|xq “ N
`

z |M´1WJpx´ µq, σ2M´1˘

M “ WJW ` σ2I
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Properties

§ Linear dimensionality reduction technique

§ Original formulation: sensitive to scale of variables

§ Global optimum (closed-form solution)

§ Nonlinear extensions: Kernel PCA, ngeural network (deep)
auto-encoders, Isomap, Laplacian Eigenmaps, ...
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Applications

§ Computer vision: Image compression, face
recognition/identification (e.g., Turk & Pentland, 1991)

§ Data visualization

§ Neuroscience, oceanography, ...
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