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Meta and Transfer Learning .
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m Motivation: Learn predictive models (and controllers) for
different robot arms
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Meta and Transfer Learning .

T

m Motivation: Learn predictive models (and controllers) for
different robot arms

m Smoothness assumption: Overall the dynamics should not be
too dissimilar »» Share some global properties

m Sightly different configurations (e.g., mass/link length)
»» Differ locally

m Re-use experience gathered so far generalize learning to new
dynamics that are similar
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m Consider supervised learning problem for task p: y? = f,,(x; )

Marc Deisenroth (UCL) Meta Learning via Bayesian Inference May 10, 2022 4



¢ ¢ =

m Consider supervised learning problem for task p: y? = f,,(x; )
m Introduce local, task-specific latent variable h,, so that

y;D = fg(l‘, hp)

Marc Deisenroth (UCL) Meta Learning via Bayesian Inference May 10, 2022 4



¢ ¢ =

m Consider supervised learning problem for task p: y? = f,,(x; )
m Introduce local, task-specific latent variable h,, so that

y;D = fg(l‘, hp)

m Separate global from local (task-specific) properties

m Shared global parameters 6 describe general “shape” of the
function/dynamics

m Task-specific properties described by latent variable h
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4
m——(u)
t=1,...,T

m Single-task supervised learning

Saemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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( 7

e
t=1,...,T,

m Multi-task supervised learning (independence between tasks)

Saemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Model &
¥
)
t=1,...,T,
p=1,...,P

m Meta learning setting (see also Gordon et al. (2019) for a
similar setting):

yf:fg(mtv hy )

m Parameters 6 capture global properties of the model

m Latent variable h, describes local configuration
m Share (global) properties between tasks

Saemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Model: Some Specifics s
\
ot——D)
t=1,...,T,
p=1,...,P

Yl = fo(zi, hy) +€

Fo(-) ~ GP w» SV-GP (Titsias, 2009)

a(H) =] _ N(hyln,, T;)

Saemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Training and Predictions s

m Training data
m (zf, yl)fort=1,....,T,forp=1,..., P tasks
m Assume that the task identity at training time is known
m Learn global model parameters 6 and variational parameters
of q(hh ey hp)
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Training and Predictions s

m Training data
m (zf, yl)fort=1,....,T,forp=1,..., P tasks
m Assume that the task identity at training time is known
m Learn global model parameters 6 and variational parameters
of q(hh ey hp)
m Test data
m (!, y!) for somet P Posterior on h;
m z! for some t M Predict y! using prior/posterior on h;

m Zero/few-shot predictions at new tasks

P(yles) = fpw*!w*, ha)a(h)dhs
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m Mean-field variational family:

q(f(-), H) = q(f(-))q(H)
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Training &
¥
o —— @)
t=1,...,T,
p=1 P

m Mean-field variational family:

q(f(-), H) = q(f(-))q(H)

m Maximize lower bound on the model evidence (ELBO):
a(f(-), H)

ELBO = Ey#() Iog
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\/\M\/ —— Train pred.
— Truef(x)
® Train data

X

y=f(x)+hy,+e

f(x)

m Training data (black discs) from 2 training tasks
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® Train data

y=f(x)+hy,+e

m Training data (black discs) from 2 training tasks

m Gaussian process models “shape” of the function
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Model-based RL: Cart-Pole Swing-up s

m Learn dynamics and controllers for different cart-pole
systems (lengths and masses of pendulum change)
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Model-based RL: Cart-Pole Swing-up s

m Learn dynamics and controllers for different cart-pole
systems (lengths and masses of pendulum change)
m Model-based RL algorithm (Kamthe & Deisenroth, 2018)

m Gaussian process as learned dynamics model
m Moment matching for long-term planning
m Model predictive control for policy learning
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Latent Embeddings s

) o (@] (@] O 1=0.4
O [ ] @) [ ] @® /=05
] O e (@] O 1=06
1=0.7

m=09 m=08 m=07 m=06 m=0.4

m Latent variable h encodes length | and mass m of the pole
m 6 training tasks, 14 held-out test tasks
m Left: True configurations;

Saemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Latent Embeddings s
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m Latent variable h encodes length | and mass m of the pole
m 6 training tasks, 14 held-out test tasks
m Left: True configurations; Right: learned embeddings

Saemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Meta-RL (Cart Pole): Training

m Pre-trained on 6 training configurations until solved

Model Training (s) Description
16.1+ 0.4
Aggregated 23.7 + 1.4 Aggregated experience (no latents)
Meta learning Aggregated experience (with latents)

24
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%)

m Few-shot generalization on 4 unseen configurations
m Success: solve all 10 (6 training + 4 test) tasks

m Meta learning

[

m Aggregated experience model (no latents)

P>
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Summary (1) "

MJSS
(@) -
1 0.5
=06
1 7
m=0.7

m Formulate meta learning as a hierarchical Bayesian inference
problem

fege

m Automatically infer similarities between tasks via latent
variables

m Speed up multi-task (reinforcement) learning
m Few-shot learning of new tasks
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Active Meta Learning: Setting .

L F 7

m Training tasks are not given a priori

m “What task to learn next?”

m Objective: Given a space of admissible tasks, choose a (small)
set of tasks that allow us to “cover” the entire task space

m Idea: use probabilistic latent embeddings of tasks for
efficient exploration (active learning)
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Active Meta Learning Setting .

Task descriptor Latent Observed task
space (e.g. pixels) space datasets

{(@}, y)}n
{2y}

{(=, ¥}

Approach:

m Observe task descriptors: e.g. task parametrizations, tactile
information, pixel observations

m Probabilistic latent embedding of task (descriptors)

Kaddour et al. (NeurIPS, 2020): Probabilistic Active Meta-Learning
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Active Meta Learning Setting .

Task descriptor Latent Observed task
space (e.g. pixels) space datasets
() y) 12
{2y}
{@} y)1m

Approach:

m Observe task descriptors: e.g. task parametrizations, tactile
information, pixel observations

m Probabilistic latent embedding of task (descriptors)

m Specify a discrete set of task descriptors, infer their latent
embedding

m Define a “surprise” utility function in latent space and find
“best” candidate

Kaddour et al. (NeurIPS, 2020): Probabilistic Active Meta-Learning
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m Task descriptors 4, (e.g., physical properties, images, ...) as
additional observations (of the task)
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t=1,...,T,

m Task descriptors 4, (e.g., physical properties, images, ...) as
additional observations (of the task)

m ELBO
logpe (Y, ¥|X) = log Ey, () [pe(Y\XaH)po(‘I”H) PUH)
q¢(H)
P
< Lyr+ Z Eq¢p(hp)[|°9 po(,|hyp)]
p=1

Kaddour et al. (NeurIPS, 2020): Probabilistic Active Meta-Learning
Marc Deisenroth (UCL) Meta Learning via Bayesian Inference May 10, 2022 17



Exploration in Latent Space

Task descriptor Latent space
space qe (H)

¢1/1/)2" ©® ©

1»[}3 w* @

A

Probabilistic Task datasets
Active 1 T A=y

Meta-Learning

m Exploration in the latent space
»» Exploit learned similarities between tasks
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Exploration in Latent Space

Task descriptor Latent space
space qe (H)

¢1/1/12" ©® ©

1»[}3 w* @

A

Probabilistic Task datasets
Active 1 T A=y

Meta-Learning

m Exploration in the latent space
»» Exploit learned similarities between tasks

m Latent space characterized by Gaussian mixture distribution
(variational posteriors of previous tasks)
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Utility Function and Exploration s
i Latent

Task-descriptive
observation space space

Mass

Length

Task datasets
Negative log-likelihood of the GMM given test task h.

P
u(hy) = —log >’ gy, (hs)

p=1

m Utility:

May 10, 2022 19

Meta Learning via Bayesian Inference

Marc Deisenroth (UCL)



Utility Function and Exploration s
i Latent

Task-descriptive
observation space space

Mass

Length

Task datasets
Negative log-likelihood of the GMM given test task h.

P
u(hy) = —log >’ gy, (hs)

p=1

m Utility:

m Rank set of candidate tasks and choose the one with the

highest utility
May 10, 2022

Meta Learning via Bayesian Inference

Marc Deisenroth (UCL)
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m Objective: Learn good forward models for a range of
cart-pole tasks
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m Objective: Learn good forward models for a range of
cart-pole tasks

m Continuous task space defined by varying masses of cart/pole
and length of pole
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-

m Objective: Learn good forward models for a range of
cart-pole tasks

m Continuous task space defined by varying masses of cart/pole
and length of pole

m Initialize with 4 tasks; Add 15 more by using different
task-sampling strategies

m Evaluate performance on a dense grid of test tasks
(NLL and RMSE)
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Task Sampling Strategies s

m Uniform sampling (UNI)
m Latin hypercube sampling (LHS)
m PAML (probabilistic active meta learning)
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Task Descriptors s

-

m Exact observations of the task parameters

m Partial observations (only observe changes in length, but not
in mass)

m High-dimensional task descriptors (pixels)
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Exact Task Descriptors s

Cart-pole

m Latent embedding h, learned via
variational inference

m PAML approach significantly more 2"
efficient in covering all admissible .
tasks than other sampling =
approaches

T

5 10 15
Number of added tasks

— Oracle PAML —— LHS — UNI
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Partial Task Descriptors s

6
g, x10 x10?
—— Oracle 20
6 PAML (ours)
—— LHS s
Re)
=4 —— UNI g
Z. =
~
) 1.0
0 0.5
0 5 10 15 0 5 10 15
Number of added tasks Number of added tasks

m Only observe change in length, but not in mass
m Overall the same picture as before
m Some loss in learning speed and overall quality of the solution
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Pixel Task Descriptors s

x10° x10%
1.0 1.0 - —— Oracle
PAML
0.5 o 0.5 —— UNI
=} 0 —
= Z 025
“0.05 = —
0.20 _—
0.00 0.15
0 5 10 15 0 10 15

5 5
Number of added tasks Number of added tasks

m Task descriptor is a single image of 100 tasks in their initial
state (upright pole)
m Pole length varies between [0.5,4.5]m

m VAE for latent embedding
»» Additional reconstruction loss in training objective

m Finds good solution to all tasks quickly
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Task descriptor Latent space
space 'Ius(H)
Vit o] ORS)
P PrJ >
Probabilistic Task datasets
Active e T (Gl
Meta-Learning .

m Meta learning as a hierarchical Bayesian inference problem

m Learn latent task representation that characterizes task
similarities

m Active learning approach in latent space for active task
selection

m Code: https://github.com/JeanKaddour/PAML
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