Meta Learning via Bayesian Inference

Marc Deisenroth UCL Centre for Artificial Intelligence Department of Computer Science University College London

Research Seminar @ DeepMind May 10, 2022

Creative Machine Learning

Collaborators

Steindór Sæmundsson

Jean Kaddour

Katja Hofmann

■ Motivation: Learn predictive models (and controllers) for different robot arms

- Motivation: Learn predictive models (and controllers) for different robot arms
- Smoothness assumption: Overall the dynamics should not be too dissimilar ➤ Share some global properties

- Motivation: Learn predictive models (and controllers) for different robot arms
- Smoothness assumption: Overall the dynamics should not be too dissimilar ➤ Share some global properties
- Sightly different configurations (e.g., mass/link length)

 Differ locally

- Motivation: Learn predictive models (and controllers) for different robot arms
- Smoothness assumption: Overall the dynamics should not be too dissimilar ➤ Share some global properties
- Sightly different configurations (e.g., mass/link length)

 Differ locally
- Re-use experience gathered so far generalize learning to new dynamics that are similar ➤>> Accelerated learning

 \blacksquare Consider supervised learning problem for task p: ${m y}^p = f_p({m x}; {m heta})$

Approach

- lacksquare Consider supervised learning problem for task p: $m{y}^p = f_p(m{x}; m{ heta})$
- Introduce local, task-specific latent variable h_p , so that

$$\boldsymbol{y}^p = f_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{h}_p)$$

- lacksquare Consider supervised learning problem for task p: $m{y}^p = f_p(m{x}; m{ heta})$
- Introduce local, task-specific latent variable h_p , so that

$$\boldsymbol{y}^p = f_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{h}_p)$$

- Separate global from local (task-specific) properties
- Shared global parameters θ describe general "shape" of the function/dynamics
- lacktriangleright Task-specific properties described by latent variable h

■ Single-task supervised learning

■ Multi-task supervised learning (independence between tasks)

■ Meta learning setting (see also Gordon et al. (2019) for a similar setting):

$$oldsymbol{y}_t^p = f_{oldsymbol{ heta}}(oldsymbol{x}_t, oldsymbol{h}_p)$$

- \blacksquare Parameters θ capture global properties of the model
- Latent variable h_p describes local configuration
- Share (global) properties between tasks

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes

Model: Some Specifics

$$m{f}_{m{ heta}}(\cdot) \sim GP$$
 >>>> SV-GP (Titsias, 2009) $q(m{H}) = \prod_{p=1}^{P} \mathcal{N}(m{h}_p | m{n}_p, m{T}_p)$

Model: Some Specifics

$$\begin{split} & \boldsymbol{f}_{\boldsymbol{\theta}}(\cdot) \sim GP \quad \Longrightarrow \text{SV-GP (Titsias, 2009)} \\ & q(\boldsymbol{H}) = \prod_{p=1}^{P} \mathcal{N}(\boldsymbol{h}_p | \boldsymbol{n}_p, \boldsymbol{T}_p) \\ & p(\boldsymbol{Y}, \boldsymbol{H}, \boldsymbol{f}(\cdot) | \boldsymbol{X}) = \prod_{p=1}^{P} q(\boldsymbol{h}_p) \prod_{t=1}^{T_p} p(\boldsymbol{y}_t | \boldsymbol{x}_t, \boldsymbol{h}_p, \boldsymbol{f}(\cdot)) q(\boldsymbol{f}(\cdot)) \end{split}$$

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes

Training and Predictions

- Training data
 - $\blacksquare (x_t^p, y_t^p)$ for $t = 1, ..., T_p$ for p = 1, ..., P tasks
 - Assume that the task identity at training time is known
 - Learn global model parameters θ and variational parameters of $q(\boldsymbol{h}_1,\ldots,\boldsymbol{h}_P)$.

Training and Predictions

- Training data
 - $\blacksquare (x_t^p, y_t^p) \text{ for } t = 1, \dots, T_p \text{ for } p = 1, \dots, P \text{ tasks}$
 - Assume that the task identity at training time is known
 - Learn global model parameters θ and variational parameters of $q(\mathbf{h}_1, \dots, \mathbf{h}_P)$.
- Test data
 - \blacksquare (x_t^i, y_t^i) for some $t \mapsto$ Posterior on h_i
 - $\blacksquare x_t^i$ for some $t \mapsto$ Predict y_t^i using prior/posterior on h_i

Training and Predictions

- Training data
 - $\blacksquare (\boldsymbol{x}_t^p, \boldsymbol{y}_t^p) \text{ for } t = 1, \dots, T_p \text{ for } p = 1, \dots, P \text{ tasks}$
 - Assume that the task identity at training time is known
 - Learn global model parameters θ and variational parameters of $q(h_1, \ldots, h_P)$.
- Test data
 - \blacksquare (x_t^i, y_t^i) for some $t \mapsto$ Posterior on h_i
- Zero/few-shot predictions at new tasks

$$p(\boldsymbol{y_*}|\boldsymbol{x_*}) = \int p(\boldsymbol{y_*}|\boldsymbol{x_*}, \boldsymbol{h_*}) q(\boldsymbol{h_*}) d\boldsymbol{h_*}$$

Training

■ Mean-field variational family:

$$q(\boldsymbol{f}(\cdot),\boldsymbol{H}) = q(\boldsymbol{f}(\cdot))q(\boldsymbol{H})$$

Training

■ Mean-field variational family:

$$q(\boldsymbol{f}(\cdot),\boldsymbol{H}) = q(\boldsymbol{f}(\cdot))q(\boldsymbol{H})$$

■ Maximize lower bound on the model evidence (ELBO):

$$ELBO = \mathbb{E}_{q(\boldsymbol{f}(\cdot),\boldsymbol{H})} \Big[\log \frac{p(\boldsymbol{Y},\boldsymbol{H},\boldsymbol{f}(\cdot)|\boldsymbol{X})}{q(\boldsymbol{f}(\cdot),\boldsymbol{H})} \Big]$$

■ Training data (black discs) from 2 training tasks

- Training data (black discs) from 2 training tasks
- Gaussian process models "shape" of the function
- lacktriangle Latent variable h_p describes vertical offset
- Good generalization at training tasks due to latent variable

- Training data (black discs) from 2 training tasks
- Gaussian process models "shape" of the function
- Latent variable h_p describes vertical offset
- Good generalization at training tasks due to latent variable
- 1-shot predictions at new tasks are informed (orange)

- Training data (black discs) from 2 training tasks
- Gaussian process models "shape" of the function
- Latent variable h_p describes vertical offset
- Good generalization at training tasks due to latent variable
- 1-shot predictions at new tasks are informed (orange)

$$y = f(x) + n_p + \epsilon$$

- Training data (black discs) from 2 training tasks
- Gaussian process models "shape" of the function
- Latent variable h_p describes vertical offset
- Good generalization at training tasks due to latent variable
- 1-shot predictions at new tasks are informed (orange)

Model-based RL: Cart-Pole Swing-up

■ Learn dynamics and controllers for different cart-pole systems (lengths and masses of pendulum change)

Model-based RL: Cart-Pole Swing-up

- Learn dynamics and controllers for different cart-pole systems (lengths and masses of pendulum change)
- Model-based RL algorithm (Kamthe & Deisenroth, 2018)
 - Gaussian process as learned dynamics model
 - Moment matching for long-term planning
 - Model predictive control for policy learning

Latent Embeddings

- Latent variable h encodes length l and mass m of the pole
- 6 training tasks, 14 held-out test tasks
- Left: True configurations;

Latent Embeddings

- \blacksquare Latent variable h encodes length l and mass m of the pole
- 6 training tasks, 14 held-out test tasks
- Left: True configurations; Right: learned embeddings

Meta-RL (Cart Pole): Training

■ Pre-trained on 6 training configurations until solved

 $\begin{array}{lll} \mbox{Model} & \mbox{Training (s)} & \mbox{Description} \\ \mbox{Independent} & 16.1 \pm 0.4 & \mbox{Independent GP-MPC} \\ \mbox{Aggregated} & 23.7 \pm 1.4 & \mbox{Aggregated experience (no latents)} \\ \mbox{Meta learning} & 15.1 \pm 0.5 & \mbox{Aggregated experience (with latents)} \end{array}$

>>> Meta learning can speed up multi-task RL

Meta-RL (Cart Pole): Few-Shot Generalization

- Few-shot generalization on 4 unseen configurations
- Success: solve all 10 (6 training + 4 test) tasks
- Meta learning
- Independent (GP-MPC)
- Aggregated experience model (no latents)
- >>> Meta RL generalizes well to unseen tasks

Summary (1)

- Formulate meta learning as a hierarchical Bayesian inference problem
- Automatically infer similarities between tasks via latent variables
- Speed up multi-task (reinforcement) learning
- Few-shot learning of new tasks

■ Training tasks are not given a priori

- Training tasks are not given a priori
- "What task to learn next?"

- Training tasks are not given a priori
- "What task to learn next?"
- Objective: Given a space of admissible tasks, choose a (small) set of tasks that allow us to "cover" the entire task space

- Training tasks are not given a priori
- "What task to learn next?"
- Objective: Given a space of admissible tasks, choose a (small) set of tasks that allow us to "cover" the entire task space
- Idea: use probabilistic latent embeddings of tasks for efficient exploration (active learning)

Approach:

- Observe task descriptors: e.g. task parametrizations, tactile information, pixel observations
- Probabilistic latent embedding of task (descriptors)

Active Meta Learning Setting

Approach:

- Observe task descriptors: e.g. task parametrizations, tactile information, pixel observations
- Probabilistic latent embedding of task (descriptors)
- Specify a discrete set of task descriptors, infer their latent embedding
- Define a "surprise" utility function in latent space and find "best" candidate

■ Task descriptors ψ_p (e.g., physical properties, images, ...) as additional observations (of the task)

- Task descriptors ψ_p (e.g., physical properties, images, ...) as additional observations (of the task)
- ELBO

$$\begin{split} \log p_{\boldsymbol{\theta}}(\boldsymbol{Y}, \boldsymbol{\Psi} | \boldsymbol{X}) &= \log \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{H})} \left[p_{\boldsymbol{\theta}}(\boldsymbol{Y} | \boldsymbol{X}, \boldsymbol{H}) p_{\boldsymbol{\theta}}(\boldsymbol{\Psi} | \boldsymbol{H}) \frac{p(\boldsymbol{H})}{q_{\boldsymbol{\phi}}(\boldsymbol{H})} \right] \\ &\leq \mathcal{L}_{ML} + \sum_{p=1}^{P} \mathbb{E}_{q_{\boldsymbol{\phi}_p}(\boldsymbol{h}_p)} [\log p_{\boldsymbol{\theta}}(\boldsymbol{\psi}_p | \boldsymbol{h}_p)] \end{split}$$

Kaddour et al. (NeurIPS, 2020): Probabilistic Active Meta-Learning

Exploration in Latent Space

- **■** Exploration in the latent space
 - >>> Exploit learned similarities between tasks

Exploration in Latent Space

- Exploration in the latent space
 - >>> Exploit learned similarities between tasks
- Latent space characterized by Gaussian mixture distribution (variational posteriors of previous tasks)

Utility Function and Exploration

lacktriangle Utility: Negative log-likelihood of the GMM given test task h_*

$$u(oldsymbol{h}_*) = -\log \sum_{p=1}^P q_{\phi_p}(oldsymbol{h}_*)$$

Utility Function and Exploration

lacktriangle Utility: Negative log-likelihood of the GMM given test task h_*

$$u(oldsymbol{h}_*) = -\log \sum_{p=1}^P q_{\phi_p}(oldsymbol{h}_*)$$

Rank set of candidate tasks and choose the one with the highest utility

Experiments

■ Objective: Learn good forward models for a range of cart-pole tasks

Experiments

- Objective: Learn good forward models for a range of cart-pole tasks
- Continuous task space defined by varying masses of cart/pole and length of pole

Experiments

- Objective: Learn good forward models for a range of cart-pole tasks
- Continuous task space defined by varying masses of cart/pole and length of pole
- Initialize with 4 tasks; Add 15 more by using different task-sampling strategies
- Evaluate performance on a dense grid of test tasks (NLL and RMSE)

Task Sampling Strategies

- Uniform sampling (UNI)
- Latin hypercube sampling (LHS)
- PAML (probabilistic active meta learning)

Task Descriptors

- **Exact** observations of the task parameters
- Partial observations (only observe changes in length, but not in mass)
- High-dimensional task descriptors (pixels)

Exact Task Descriptors

- Latent embedding h_p learned via variational inference
- PAML approach significantly more efficient in covering all admissible tasks than other sampling approaches

Partial Task Descriptors

- Only observe change in length, but not in mass
- Overall the same picture as before
- Some loss in learning speed and overall quality of the solution

Pixel Task Descriptors

- Task descriptor is a single image of 100 tasks in their initial state (upright pole)
- lacktriangle Pole length varies between $[0.5, 4.5] {
 m m}$
- VAE for latent embedding
 Additional reconstruction loss in training objective
- Finds good solution to all tasks quickly

Summary

- Meta learning as a hierarchical Bayesian inference problem
- Learn latent task representation that characterizes task similarities
- Active learning approach in latent space for active task selection
- Code: https://github.com/JeanKaddour/PAML

References I

- [1] J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. Turner. Meta-Learning Probabilistic Inference for Prediction. In Proceedings of the International Conference on Learning Representations, 2019.
- [2] J. Kaddour, S. Sæmundsson, and M. P. Deisenroth. Probabilistic Active Meta-Learning. In Advances in Neural Information Processing Systems, 2020.
- [3] S. Kamthe and M. P. Deisenroth. Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control. In Proceedings of the International Conference on Artificial Intelligence and Statistics, 2018.
- [4] S. Sæmundsson, K. Hofmann, and M. P. Deisenroth. Meta Reinforcement Learning with Latent Variable Gaussian Processes. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2018.
- [5] M. K. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In Proceedings of the International Conference on Artificial Intelligence and Statistics, 2009.