Probabilistic Models for Data-Efficient Reinforcement Learning

Marc Deisenroth
Centre for Artificial Intelligence
Department of Computer Science University College London
@mpd37
m.deisenroth@ucl.ac.uk https://deisenroth.cc

Creative Machine Learning
Karlsruhe Institute of Technology
July 29, 2020

Autonomous Robots: Key Challenges

■ Three key challenges in autonomous robots: Modeling. Predicting. Decision making.

Robotics

Autonomous Robots: Key Challenges

- Three key challenges in autonomous robots: Modeling. Predicting. Decision making.
- No human in the loop "Learn" from data
- Automatically extract information

■ Data-efficient (fast) learning

- Uncertainty: sensor noise, unknown processes, limited knowledge, ...

Robotics

Autonomous Robots: Key Challenges

■ Three key challenges in autonomous robots: Modeling. Predicting. Decision making.

- No human in the loop "Learn" from data
- Automatically extract information

■ Data-efficient (fast) learning

- Uncertainty: sensor noise, unknown processes, limited knowledge, ...

Robotics
\checkmark Reinforcement learning subject to data efficiency

Data-Efficient Reinforcement Learning

1 Model-based RL
\rightarrow Data-efficient decision making
2 Model predictive RL
\rightarrow Speed up learning further by online planning
3 Meta learning using latent variables
\rightarrow Generalize knowledge to new situations

Reinforcement Learning and Optimal Control

 $\pm \mathrm{Cl}_{1}$$$
\boldsymbol{x}_{t+1}=f\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)+\boldsymbol{w}, \quad \boldsymbol{u}_{t}=\pi\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)
$$

Reinforcement Learning and Optimal Control

Objective (Controller Learning)

Find policy parameters $\boldsymbol{\theta}^{*}$ that minimize the expected long-term cost

$$
J(\boldsymbol{\theta})=\sum_{t=1}^{T} \mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right], \quad p\left(\boldsymbol{x}_{0}\right)=\mathcal{N}\left(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}\right)
$$

Instantaneous cost $c\left(\boldsymbol{x}_{t}\right)$,

$$
\text { e.g., }\left\|\boldsymbol{x}_{t}-\boldsymbol{x}_{\text {target }}\right\|^{2}
$$

- Typical objective in optimal control and reinforcement learning (Bertsekas, 2005; Sutton \& Barto, 1998)

Fast Reinforcement Learning

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta})=\sum_{t} \mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]$

PILCO Framework: High-Level Steps

1 Probabilistic model for transition function f
\rightarrow System identification

Fast Reinforcement Learning

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta})=\sum_{t} \mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]$

PILCO Framework: High-Level Steps

1 Probabilistic model for transition function f
\rightarrow System identification
2 Compute long-term predictions $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$

Fast Reinforcement Learning

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta})=\sum_{t} \mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]$

PILCO Framework: High-Level Steps

1 Probabilistic model for transition function f
\rightarrow System identification
2 Compute long-term predictions $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$
3 Policy improvement

Fast Reinforcement Learning

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta})=\sum_{t} \mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]$

PILCO Framework: High-Level Steps

1 Probabilistic model for transition function f
\rightarrow System identification
2 Compute long-term predictions $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$
3 Policy improvement
4 Apply controller

Fast Reinforcement Learning

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta})=\sum_{t} \mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]$

PILCO Framework: High-Level Steps

1 Probabilistic model for transition function f - System identification

2 Compute long-term predictions $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$
3 Policy improvement
4 Apply controller

Model Learning (System Identification)

Model learning problem: Find a function $f: x \mapsto f(x)=y$

Observed function values

Model Learning (System Identification)

Model learning problem: Find a function $f: x \mapsto f(x)=y$

Plausible model

Model Learning (System Identification)

Model learning problem: Find a function $f: x \mapsto f(x)=y$

Plausible model
Predictions? Decision Making?

Model Learning (System Identification)

Model learning problem: Find a function $f: x \mapsto f(x)=y$

More plausible models
Predictions? Decision Making? Model Errors!

Model Learning (System Identification)

Model learning problem: Find a function $f: x \mapsto f(x)=y$

Distribution over plausible functions

Model Learning (System Identification)

Model learning problem: Find a function $f: x \mapsto f(x)=y$

Distribution over plausible functions
\rightarrow Express uncertainty about the underlying function to be robust to model errors
\rightarrow Gaussian process for model learning
(Rasmussen \& Williams, 2006)

Fast Reinforcement Learning

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta})=\sum_{t} \mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]$

PILCO Framework: High-Level Steps

1 Probabilistic model for transition function f
\rightarrow System identification
2 Compute long-term predictions $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$
3 Policy improvement
4 Apply controller

Long-Term Predictions

■ Iteratively compute $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$

Long-Term Predictions

■ Iteratively compute $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$

$$
\underbrace{p\left(\boldsymbol{x}_{t+1} \mid \boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)}_{\text {GP prediction }} \underbrace{p\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t} \mid \boldsymbol{\theta}\right)}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}
$$

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Long-Term Predictions

■ Iteratively compute $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$

$$
p\left(\boldsymbol{x}_{t+1} \mid \boldsymbol{\theta}\right)=\iiint \underbrace{p\left(\boldsymbol{x}_{t+1} \mid \boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)}_{\text {GP prediction }} \underbrace{p\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t} \mid \boldsymbol{\theta}\right)}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} d f d \boldsymbol{x}_{t} d \boldsymbol{u}_{t}
$$

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Long-Term Predictions

■ Iteratively compute $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$

$$
p\left(\boldsymbol{x}_{t+1} \mid \boldsymbol{\theta}\right)=\iiint \underbrace{p\left(\boldsymbol{x}_{t+1} \mid \boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)}_{\text {GP prediction }} \underbrace{p\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t} \mid \boldsymbol{\theta}\right)}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} d f d \boldsymbol{x}_{t} d \boldsymbol{u}_{t}
$$

- GP moment matching
(Girard et al., 2002; Quiñonero-Candela et al., 2003)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Fast Reinforcement Learning

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta})=\sum_{t} \mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]$

PILCO Framework: High-Level Steps

1 Probabilistic model for transition function f
\rightarrow System identification
2 Compute long-term predictions $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$
3 Policy improvement
■ Compute expected long-term cost $J(\boldsymbol{\theta})$

- Find parameters $\boldsymbol{\theta}$ that minimize $J(\boldsymbol{\theta})$

4 Apply controller

Policy Improvement

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta})=\sum_{t} \mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]$

- Know how to predict $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$

Policy Improvement

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta})=\sum_{t} \mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]$

- Know how to predict $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$
- Compute

$$
\mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]=\int c\left(\boldsymbol{x}_{t}\right) \mathcal{N}\left(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t}\right) d \boldsymbol{x}_{t}, \quad t=1, \ldots, T
$$

and sum them up to obtain $J(\boldsymbol{\theta})$

Policy Improvement

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta})=\sum_{t} \mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]$

- Know how to predict $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$
- Compute

$$
\mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]=\int c\left(\boldsymbol{x}_{t}\right) \mathcal{N}\left(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t}\right) d \boldsymbol{x}_{t}, \quad t=1, \ldots, T
$$

and sum them up to obtain $J(\boldsymbol{\theta})$

- Analytically compute gradient $\mathrm{d} J(\boldsymbol{\theta}) / \mathrm{d} \boldsymbol{\theta}$

■ Standard gradient-based optimizer (e.g., BFGS) to find $\boldsymbol{\theta}^{*}$

Fast Reinforcement Learning

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta})=\sum_{t} \mathbb{E}\left[c\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{\theta}\right]$

PILCO Framework: High-Level Steps

1 Probabilistic model for transition function f
\rightarrow System identification
2 Compute long-term predictions $p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right), \ldots, p\left(\boldsymbol{x}_{T} \mid \boldsymbol{\theta}\right)$
3 Policy improvement
4 Apply controller

Standard Benchmark: Cart-Pole Swing-up

- Swing up and balance a freely swinging pendulum on a cart

■ No knowledge about nonlinear dynamics $>$ Learn from scratch
■ Cost function $c(\boldsymbol{x})=1-\exp \left(-\left\|\boldsymbol{x}-\boldsymbol{x}_{\text {target }}\right\|^{2}\right)$

■ Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth \& Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search

Standard Benchmark: Cart-Pole Swing-up

- Swing up and balance a freely swinging pendulum on a cart

■ No knowledge about nonlinear dynamics $\boldsymbol{\omega}$ Learn from scratch

- Cost function $c(\boldsymbol{x})=1-\exp \left(-\left\|\boldsymbol{x}-\boldsymbol{x}_{\text {target }}\right\|^{2}\right)$

■ Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth \& Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search

Standard Benchmark: Cart-Pole Swing-up

- Swing up and balance a freely swinging pendulum on a cart

■ No knowledge about nonlinear dynamics $>$ Learn from scratch

- Cost function $c(\boldsymbol{x})=1-\exp \left(-\left\|\boldsymbol{x}-\boldsymbol{x}_{\text {target }}\right\|^{2}\right)$

■ Unprecedented learning speed compared to state-of-the-art
■ Code: https://github.com/ICL-SML/pilco-matlab

[^0]
Wide Applicability

with D Fox

with P Englert, A Paraschos, J Peters

with A Kupcsik, J Peters, G Neumann

B Bischoff (Bosch), ESANN 2013

A McHutchon (U Cambridge)

B Bischoff (Bosch), ECML 2013

- Application to a wide range of robotic systems

Deisenroth et al. (RSS, 2011): Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning
Englert et al. (ICRA, 2013): Model-based Imitation Learning by Probabilistic Trajectory Matching
Deisenroth et al. (ICRA, 2014): Multi-Task Policy Search for Robotics
Kupcsik et al. (AIJ, 2017): Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills

Summary (1)

■ In robotics, data-efficient learning is critical

- Probabilistic, model-based RL approach
- Reduce model bias
- Unprecedented learning speed

■ Wide applicability

Safe Exploration

■ Deal with real-world safety constraints (states/controls)
■ Use probabilistic model to predict whether state constraints are violated (e.g., Sui et al., 2015; Berkenkamp et al., 2017)
■ Adjust policy if necessary (during policy learning)

Safe Exploration

■ Deal with real-world safety constraints (states/controls)

- Use probabilistic model to predict whether state constraints are violated (e.g., Sui et al., 2015; Berkenkamp et al., 2017)
■ Adjust policy if necessary (during policy learning)
- Safe exploration within an MPC-based RL setting
\rightarrow Optimize control signals \boldsymbol{u}_{t} directly (no policy parameters)

Approach

- Idea: Optimize control signals directly (instead of policy parameters)
■ Few parameters to optimize \downarrow Low-dimensional search space
- Open-loop control
\rightarrow No chance of success (with minor model inaccuracies)

Approach

- Idea: Optimize control signals directly (instead of policy parameters)
■ Few parameters to optimize $\|$ Low-dimensional search space
■ Open-loop control
- No chance of success (with minor model inaccuracies)

■ Model predictive control (MPC) turns this into a closed-loop control approach

Approach

- Idea: Optimize control signals directly (instead of policy parameters)
■ Few parameters to optimize \downarrow Low-dimensional search space
- Open-loop control
- No chance of success (with minor model inaccuracies)
- Model predictive control (MPC) turns this into a closed-loop control approach
■ Use this within a trial-and-error RL setting

Probabilistic MPC in RL

- Learned GP model for transition dynamics
- Repeat (while executing the policy):

1 In current state x_{t}, determine optimal control sequence $\boldsymbol{u}_{0}^{*}, \ldots, \boldsymbol{u}_{H-1}^{*}$
2 Apply first control \boldsymbol{u}_{0}^{*} in state \boldsymbol{x}_{t}
3 Transition to next state \boldsymbol{x}_{t+1}
4 Update GP transition model

Theoretical Results

- Uncertainty propagation is deterministic (GP moment matching)
\rightarrow Re-formulate system dynamics:

$$
\begin{aligned}
\boldsymbol{z}_{t+1} & =f_{M M}\left(\boldsymbol{z}_{t}, \boldsymbol{u}_{t}\right) \\
\boldsymbol{z}_{t} & =\left\{\boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t}\right\} \quad \mapsto \text { Collects moments }
\end{aligned}
$$

Theoretical Results

- Uncertainty propagation is deterministic (GP moment matching)
\rightarrow Re-formulate system dynamics:

$$
\begin{aligned}
\boldsymbol{z}_{t+1} & =f_{M M}\left(\boldsymbol{z}_{t}, \boldsymbol{u}_{t}\right) \\
\boldsymbol{z}_{t} & =\left\{\boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t}\right\} \quad \mapsto \text { Collects moments }
\end{aligned}
$$

- Deterministic system function that propagates moments

■ Lipschitz continuity (under mild assumptions) implies that we can apply Pontryagin's Minimum Principle

- Principled treatment of control constraints

Theoretical Results

■ Uncertainty propagation is deterministic (GP moment matching)
\rightarrow Re-formulate system dynamics:

$$
\begin{aligned}
\boldsymbol{z}_{t+1} & =f_{M M}\left(\boldsymbol{z}_{t}, \boldsymbol{u}_{t}\right) \\
\boldsymbol{z}_{t} & =\left\{\boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t}\right\} \quad \pitchfork \text { Collects moments }
\end{aligned}
$$

- Deterministic system function that propagates moments

■ Lipschitz continuity (under mild assumptions) implies that we can apply Pontryagin's Minimum Principle

- Principled treatment of control constraints
- Use predictive uncertainty to check violation of state constraints

Learning Speed (Cart Pole)

- Zero-Var: Only use the mean of the GP, discard variances for long-term predictions

Kamthe \& Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Learning Speed (Cart Pole)

■ Zero-Var: Only use the mean of the GP, discard variances for long-term predictions

- MPC: Increased data efficiency (40% less experience required than PILCO)

Kamthe \& Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Learning Speed (Cart Pole)

■ Zero-Var: Only use the mean of the GP, discard variances for long-term predictions
■ MPC: Increased data efficiency (40% less experience required than PILCO)

- MPC more robust to model inaccuracies than a parametrized feedback controller

Kamthe \& Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Learning Speed (Double Pendulum)

■ GP-MPC maintains the same improvement in data efficiency
■ Zero-Var fails:

- Gets stuck in local optimum near start state
- Insufficient exploration due to lack of uncertainty propagation

Kamthe \& Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Learning Speed (Double Pendulum)

- GP-MPC maintains the same improvement in data efficiency

■ Zero-Var fails:

- Gets stuck in local optimum near start state
- Insufficient exploration due to lack of uncertainty propagation
- Although MPC is fairly robust to model inaccuracies we cannot get away without uncertainty propagation

Kamthe \& Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Safety Constraints (Cart Pole)

\checkmark Propagating model uncertainty important for safety

Kamthe \& Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Summary (2)

- Probabilistic prediction models for safe exploration
- Uncertainty propagation can be used to reduce violation of safety constraints
■ MPC framework increases robustness to model errors \checkmark Increased data efficiency

Meta Learning

Meta Learning

Generalize knowledge from known tasks to new (related) tasks

Meta Learning

Meta Learning

Generalize knowledge from known tasks to new (related) tasks
■ Different robot configurations (link lengths, weights, ...)
■ Re-use experience gathered so far generalize learning to new dynamics that are similar

- Accelerated learning

Approach

- Separate global and task-specific properties
- Shared global parameters describe general dynamics

■ Describe task-specific (local) configurations with latent variable

Approach

■ Separate global and task-specific properties

- Shared global parameters describe general dynamics

■ Describe task-specific (local) configurations with latent variable

- Online variational inference of (unseen) configurations

Meta Model Learning with Latent Variables

$$
\boldsymbol{y}_{t}=\boldsymbol{f}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{h}_{p} ; \boldsymbol{\theta}\right)
$$

Meta Model Learning with Latent Variables

$$
\boldsymbol{y}_{t}=\boldsymbol{f}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{h}_{p} ; \boldsymbol{\theta}\right)
$$

■ GP captures global (shared) properties of the dynamics

Meta Model Learning with Latent Variables

$$
\boldsymbol{y}_{t}=\boldsymbol{f}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{h}_{p} ; \boldsymbol{\theta}\right)
$$

- GP captures global (shared) properties of the dynamics

■ Latent variable \boldsymbol{h}_{p} describes task-specific properties \rightarrow Variational inference to find a posterior on latent configuration

Meta Model Learning with Latent Variables

$$
\boldsymbol{y}_{t}=\boldsymbol{f}\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{h}_{p} ; \boldsymbol{\theta}\right)
$$

- GP captures global (shared) properties of the dynamics

■ Latent variable \boldsymbol{h}_{p} describes task-specific properties - Variational inference to find a posterior on latent configuration

- Fast online inference of new configurations (no model re-training required)
Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes

Latent Embeddings

■ Latent variable \boldsymbol{h} encodes length l and mass m of the cart pole

- 6 training tasks, 14 held-out test tasks

Meta-RL (Cart Pole): Training

- Pre-trained on 6 training configurations until solved

\quad Model	Training (s)	Description
Independent	16.1 ± 0.4	Independent GP-MPC
Aggregated	23.7 ± 1.4	Aggregated experience (no latents)
Meta learning	$\mathbf{1 5 . 1} \pm \mathbf{0 . 5}$	Aggregated experience (with latents)

\rightarrow Meta learning can help speeding up RL

Meta-RL (Cart Pole): Few-Shot Generalization

- Few-shot generalization on 4 unseen configurations

■ Success: solve all 10 (6 training +4 test) tasks

- Meta learning: blue

■ Independent (GP-MPC): orange

- Aggregated experience model (no latents): green
- Meta RL generalizes well to unseen tasks

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes

Summary (3)

■ Generalize knowledge from known situations to unseen ones \rightarrow Few-shot learning

- Latent variable can be used to infer task similarities

■ Significant speed-up in model learning and model-based RL

Wrap-Up

※101

■ Data efficiency is a practical challenge for autonomous robots

- Three pillars of data-efficient reinforcement learning for autonomous robots
1 Model-based reinforcement learning with learned probabilistic models for fast learning from scratch
2 Model predictive reinforcement learning with learned dynamics models accelerates learning and allow for safe exploration
[3 Meta learning using latent variables to generalize knowledge to new situations

■ Key to success: Probabilistic modeling and Bayesian inference

Wrap-Up

\#101

■ Data efficiency is a practical challenge for autonomous robots

- Three pillars of data-efficient reinforcement learning for autonomous robots
1 Model-based reinforcement learning with learned probabilistic models for fast learning from scratch
2 Model predictive reinforcement learning with learned dynamics models accelerates learning and allow for safe exploration
[3 Meta learning using latent variables to generalize knowledge to new situations

■ Key to success: Probabilistic modeling and Bayesian inference
Thank you for your attention

References I

[1] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause. Safe Model-based Reinforcement Learning with Stability Guarantees. In Advances in Neural Information Processing Systems, 2017.
[2] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 of Optimization and Computation Series. Athena Scientific, Belmont, MA, USA, 3rd edition, 2005.
$[3]$ D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2 of Optimization and Computation Series. Athena Scientific, Belmont, MA, USA, 3rd edition, 2007.
[4] B. Bischoff, D. Nguyen-Tuong, T. Koller, H. Markert, and A. Knoll. Learning Throttle Valve Control Using Policy Search. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, 2013.
[5] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox. Multi-Task Policy Search for Robotics. In Proceedings of the International Conference on Robotics and Automation, 2014.
[6] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian Processes for Data-Efficient Learning in Robotics and Control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):408-423, 2015.
[7] M. P. Deisenroth and C. E. Rasmussen. PILCO: A Model-Based and Data-Efficient Approach to Policy Search. In Proceedings of the International Conference on Machine Learning, 2011.
[8] M. P. Deisenroth, C. E. Rasmussen, and D. Fox. Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning. In Proceedings of Robotics: Science and Systems, 2011.
[9] P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Model-based Imitation Learning by Probabilistic Trajectory Matching. In Proceedings of the IEEE International Conference on Robotics and Automation, 2013.
[10] P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Probabilistic Model-based Imitation Learning. Adaptive Behavior, 21:388-403, 2013.
[11] A. Girard, C. E. Rasmussen, and R. Murray-Smith. Gaussian Process Priors with Uncertain Inputs: Multiple-Step Ahead Prediction. Technical Report TR-2002-119, University of Glasgow, 2002.
[12] S. Kamthe and M. P. Deisenroth. Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control. In Proceedings of the International Conference on Artificial Intelligence and Statistics, 2018.

References II

[13] A. Kupcsik, M. P. Deisenroth, J. Peters, L. A. Poha, P. Vadakkepata, and G. Neumann. Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills. Artificial Intelligence, 2017.
[14] T. X. Nghiem and C. N. Jones. Data-driven Demand Response Modeling and Control of Buildings with Gaussian Processes. In Proceedings of the American Control Conference, 2017.
[15] J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E. Rasmussen. Propagation of Uncertainty in Bayesian Kernel Models-Application to Multiple-Step Ahead Forecasting. In IEEE International Conference on Acoustics, Speech and Signal Processing, volume 2, pages 701-704, Apr. 2003.
[16] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2006.
[17] S. Sæmundsson, K. Hofmann, and M. P. Deisenroth. Meta Reinforcement Learning with Latent Variable Gaussian Processes. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2018.
[18] Y. Sui, A. Gotovos, J. W. Burdick, and A. Krause. Safe Exploration for Optimization with Gaussian Processes. In Proceedings of the International Conference on Machine Learning, 2015.
[19] M. K. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In Proceedings of the International Conference on Artificial Intelligence and Statistics, 2009.

Controller Parametrization

■ Controller:

$$
\begin{aligned}
\tilde{\pi}(\boldsymbol{x}, \boldsymbol{\theta}) & =\sum_{k=1}^{K} w_{k} \exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Lambda}\left(\boldsymbol{x}-\boldsymbol{\mu}_{k}\right)\right) \\
u & =\pi(\boldsymbol{x}, \boldsymbol{\theta})=u_{\max } \sigma(\tilde{\pi}(\boldsymbol{x}, \boldsymbol{\theta})) \in\left[-u_{\max }, u_{\max }\right]
\end{aligned}
$$

where σ is a squashing function.

Controller Parametrization

■ Controller:

$$
\begin{aligned}
\tilde{\pi}(\boldsymbol{x}, \boldsymbol{\theta}) & =\sum_{k=1}^{K} w_{k} \exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Lambda}\left(\boldsymbol{x}-\boldsymbol{\mu}_{k}\right)\right) \\
u & =\pi(\boldsymbol{x}, \boldsymbol{\theta})=u_{\max } \sigma(\tilde{\pi}(\boldsymbol{x}, \boldsymbol{\theta})) \in\left[-u_{\max }, u_{\max }\right]
\end{aligned}
$$

where σ is a squashing function.

- Parameters:

$$
\boldsymbol{\theta}:=\left\{w_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Lambda}\right\}
$$

Controller Parametrization

- Controller:

$$
\begin{aligned}
\tilde{\pi}(\boldsymbol{x}, \boldsymbol{\theta}) & =\sum_{k=1}^{K} w_{k} \exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Lambda}\left(\boldsymbol{x}-\boldsymbol{\mu}_{k}\right)\right) \\
u & =\pi(\boldsymbol{x}, \boldsymbol{\theta})=u_{\max } \sigma(\tilde{\pi}(\boldsymbol{x}, \boldsymbol{\theta})) \in\left[-u_{\max }, u_{\max }\right]
\end{aligned}
$$

where σ is a squashing function.

- Parameters:

$$
\boldsymbol{\theta}:=\left\{w_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Lambda}\right\}
$$

- Squashing function:

$$
\sigma(z)=\frac{9}{8} \sin (z)+\frac{1}{8} \sin (3 z)
$$

Squashing Function

Cost Functions

- Quadratic cost $\quad c(\boldsymbol{x})=\left(\boldsymbol{x}-\boldsymbol{x}_{\text {target }}\right)^{\top} \boldsymbol{W}\left(\boldsymbol{x}-\boldsymbol{x}_{\text {target }}\right)$

■ Saturating cost $c(\boldsymbol{x})=1-\exp \left(-\left(\boldsymbol{x}-\boldsymbol{x}_{\text {target }}\right)^{\top} \boldsymbol{W}\left(\boldsymbol{x}-\boldsymbol{x}_{\text {target }}\right)\right)$

■ Quadratic cost pays a lot of attention to states "far away" \rightarrow Bad idea for exploration

Natural Exploration with the Saturating Cost

■ In the early stages of learning, state predictions are expected to be far away from the target

Natural Exploration with the Saturating Cost

■ In the early stages of learning, state predictions are expected to be far away from the target \mapsto Exploration favored

Natural Exploration with the Saturating Cost

- In the early stages of learning, state predictions are expected to be far away from the target $>$ Exploration favored
■ In the final stages of learning, state predictions are expected to be close to the target

Natural Exploration with the Saturating Cost

- In the early stages of learning, state predictions are expected to be far away from the target $>$ Exploration favored
■ In the final stages of learning, state predictions are expected to be close to the target \mapsto Exploitation favored

Natural Exploration with the Saturating Cost

- In the early stages of learning, state predictions are expected to be far away from the target $>$ Exploration favored
■ In the final stages of learning, state predictions are expected to be close to the target $>$ Exploitation favored
- Bayesian treatment: Natural exploration/exploitation trade-off

GP Moment Matching: Some Details

$$
\begin{aligned}
f & \sim G P(0, k), \quad \text { Training data: } \boldsymbol{X}, \boldsymbol{y} \\
\boldsymbol{x}_{*} & \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
\end{aligned}
$$

■ Compute $\mathbb{E}\left[f\left(\boldsymbol{x}_{*}\right)\right]$

GP Moment Matching: Some Details

$$
\begin{aligned}
f & \sim G P(0, k), \quad \text { Training data: } \boldsymbol{X}, \boldsymbol{y} \\
\boldsymbol{x}_{*} & \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
\end{aligned}
$$

■ Compute $\mathbb{E}\left[f\left(\boldsymbol{x}_{*}\right)\right]$

$$
\mathbb{E}_{f, \boldsymbol{x}_{*}}\left[f\left(\boldsymbol{x}_{*}\right)\right]=\mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{f}\left[f\left(\boldsymbol{x}_{*}\right) \mid \boldsymbol{x}_{*}\right]\right]=\mathbb{E}_{\boldsymbol{x}_{*}}\left[m_{f}\left(\boldsymbol{x}_{*}\right)\right]
$$

GP Moment Matching: Some Details

$$
\begin{aligned}
f & \sim G P(0, k), \quad \text { Training data: } \boldsymbol{X}, \boldsymbol{y} \\
\boldsymbol{x}_{*} & \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
\end{aligned}
$$

■ Compute $\mathbb{E}\left[f\left(\boldsymbol{x}_{*}\right)\right]$

$$
\begin{aligned}
\mathbb{E}_{f, \boldsymbol{x}_{*}}\left[f\left(\boldsymbol{x}_{*}\right)\right] & =\mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{f}\left[f\left(\boldsymbol{x}_{*}\right) \mid \boldsymbol{x}_{*}\right]\right]=\mathbb{E}_{\boldsymbol{x}_{*}}\left[m_{f}\left(\boldsymbol{x}_{*}\right)\right] \\
& =\mathbb{E}_{\boldsymbol{x}_{*}}\left[k\left(\boldsymbol{x}_{*}, \boldsymbol{X}\right)\left(\boldsymbol{K}+\sigma_{n}^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y}\right]
\end{aligned}
$$

GP Moment Matching: Some Details

$$
\begin{aligned}
f & \sim G P(0, k), \quad \text { Training data: } \boldsymbol{X}, \boldsymbol{y} \\
\boldsymbol{x}_{*} & \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
\end{aligned}
$$

- Compute $\mathbb{E}\left[f\left(\boldsymbol{x}_{*}\right)\right]$

$$
\begin{aligned}
\mathbb{E}_{f, \boldsymbol{x}_{*}}\left[f\left(\boldsymbol{x}_{*}\right)\right] & =\mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{f}\left[f\left(\boldsymbol{x}_{*}\right) \mid \boldsymbol{x}_{*}\right]\right]=\mathbb{E}_{\boldsymbol{x}_{*}}\left[m_{f}\left(\boldsymbol{x}_{*}\right)\right] \\
& =\mathbb{E}_{\boldsymbol{x}_{*}}\left[k\left(\boldsymbol{x}_{*}, \boldsymbol{X}\right)\left(\boldsymbol{K}+\sigma_{n}^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y}\right] \\
& =\boldsymbol{\beta}^{\top} \int k\left(\boldsymbol{X}, \boldsymbol{x}_{*}\right) \mathcal{N}\left(\boldsymbol{x}_{*} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) d \boldsymbol{x}_{*} \\
\boldsymbol{\beta} & :=\left(\boldsymbol{K}+\sigma_{n}^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y} \quad \text { windependent of } \boldsymbol{x}_{*}
\end{aligned}
$$

GP Moment Matching: Some Details

$$
\begin{aligned}
f & \sim G P(0, k), \quad \text { Training data: } \boldsymbol{X}, \boldsymbol{y} \\
\boldsymbol{x}_{*} & \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
\end{aligned}
$$

- Compute $\mathbb{E}\left[f\left(\boldsymbol{x}_{*}\right)\right]$

$$
\begin{aligned}
\mathbb{E}_{f, \boldsymbol{x}_{*}}\left[f\left(\boldsymbol{x}_{*}\right)\right] & =\mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{f}\left[f\left(\boldsymbol{x}_{*}\right) \mid \boldsymbol{x}_{*}\right]\right]=\mathbb{E}_{\boldsymbol{x}_{*}}\left[m_{f}\left(\boldsymbol{x}_{*}\right)\right] \\
& =\mathbb{E}_{\boldsymbol{x}_{*}}\left[k\left(\boldsymbol{x}_{*}, \boldsymbol{X}\right)\left(\boldsymbol{K}+\sigma_{n}^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y}\right] \\
& =\boldsymbol{\beta}^{\top} \int k\left(\boldsymbol{X}, \boldsymbol{x}_{*}\right) \mathcal{N}\left(\boldsymbol{x}_{*} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) d \boldsymbol{x}_{*} \\
\boldsymbol{\beta} & :=\left(\boldsymbol{K}+\sigma_{n}^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y} \quad \text { independent of } \boldsymbol{x}_{*}
\end{aligned}
$$

- If k is a Gaussian (squared exponential) kernel, this integral can be solved analytically
- Variance of $f\left(\boldsymbol{x}_{*}\right)$ can be computed similarly

Meta Learning Model

$\boldsymbol{f}(\cdot) \sim G P$
$p(\boldsymbol{H})=\prod_{p} p\left(\boldsymbol{h}_{p}\right), \quad p\left(\boldsymbol{h}_{p}\right)=\mathcal{N}(\mathbf{0}, \boldsymbol{I})$

Meta Learning Model

$$
\begin{aligned}
& \boldsymbol{f}(\cdot) \sim G P \\
& p(\boldsymbol{H})=\prod_{p} p\left(\boldsymbol{h}_{p}\right), \quad p\left(\boldsymbol{h}_{p}\right)=\mathcal{N}(\mathbf{0}, \boldsymbol{I}) \\
& p(\boldsymbol{Y}, \boldsymbol{H}, \boldsymbol{f}(\cdot) \mid \boldsymbol{X}, \boldsymbol{U})=\prod_{p=1}^{P} p\left(\boldsymbol{h}_{p}\right) \prod_{t=1}^{T_{p}} p\left(\boldsymbol{y}_{t} \mid \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{h}_{p}, \boldsymbol{f}(\cdot)\right) p(\boldsymbol{f}(\cdot)) \\
& \boldsymbol{y}_{t}=\boldsymbol{x}_{t+1}-\boldsymbol{x}_{t}
\end{aligned}
$$

Variational Inference in Meta Learning Model

Mean-field variational family:

$$
\begin{aligned}
q(\boldsymbol{f}(\cdot), \boldsymbol{H}) & =q(\boldsymbol{f}(\cdot)) q(\boldsymbol{H}) \\
q(\boldsymbol{H}) & =\prod_{p=1}^{P} \mathcal{N}\left(\boldsymbol{h}_{p} \mid \boldsymbol{n}_{p}, \boldsymbol{T}_{p}\right) \\
q(\boldsymbol{f}(\cdot)) & =\int p\left(\boldsymbol{f}(\cdot) \mid \boldsymbol{f}_{Z}\right) q\left(\boldsymbol{f}_{Z}\right) d \boldsymbol{f}_{Z} \quad \longrightarrow \text { SV-GP (Titsias, 2009) }
\end{aligned}
$$

Evidence Lower Bound

$$
E L B O=\mathbb{E}_{q(\boldsymbol{f}(\cdot), \boldsymbol{H})}\left[\log \frac{p(\boldsymbol{Y}, \boldsymbol{H}, \boldsymbol{f}(\cdot) \mid \boldsymbol{X}, \boldsymbol{U})}{q(\boldsymbol{f}(\cdot), \boldsymbol{H})}\right]
$$

Evidence Lower Bound

$$
\begin{aligned}
E L B O= & \mathbb{E}_{q(\boldsymbol{f}(\cdot), \boldsymbol{H})}\left[\log \frac{p(\boldsymbol{Y}, \boldsymbol{H}, \boldsymbol{f}(\cdot) \mid \boldsymbol{X}, \boldsymbol{U})}{q(\boldsymbol{f}(\cdot), \boldsymbol{H})}\right] \\
= & \sum_{p=1}^{P} \sum_{t=1}^{T_{p}} \mathbb{E}_{q\left(\boldsymbol{f}_{t} \mid \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{h}_{p}\right) q\left(\boldsymbol{h}_{p}\right)}\left[\log p\left(\boldsymbol{y}_{t} \mid \boldsymbol{f}_{t}\right)\right] \\
& -\operatorname{KL}(q(\boldsymbol{H}) \| p(\boldsymbol{H}))-\operatorname{KL}(q(\boldsymbol{f}(\cdot)) \| p(\boldsymbol{f}(\cdot)))
\end{aligned}
$$

Evidence Lower Bound

$$
\begin{aligned}
E L B O= & \mathbb{E}_{q(\boldsymbol{f}(\cdot), \boldsymbol{H})}\left[\log \frac{p(\boldsymbol{Y}, \boldsymbol{H}, \boldsymbol{f}(\cdot) \mid \boldsymbol{X}, \boldsymbol{U})}{q(\boldsymbol{f}(\cdot), \boldsymbol{H})}\right] \\
= & \sum_{p=1}^{P} \sum_{t=1}^{T_{p}} \mathbb{E}_{q\left(\boldsymbol{f}_{\boldsymbol{f}} \mid \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{h}_{\boldsymbol{p}}\right) q\left(\boldsymbol{h}_{\boldsymbol{p}}\right)}\left[\log p\left(\boldsymbol{y}_{t} \mid \boldsymbol{f}_{t}\right)\right] \\
& -\operatorname{KL}(q(\boldsymbol{H}) \| p(\boldsymbol{H}))-\operatorname{KL}(q(\boldsymbol{f}(\cdot)) \| p(\boldsymbol{f}(\cdot))) \\
= & \underbrace{\sum_{p=1}^{P} \sum_{t=1}^{T_{p}} \overbrace{\mathbb{E}_{q\left(\boldsymbol{f}_{\boldsymbol{f}} \mid \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{h}_{\boldsymbol{p}}\right) q\left(\boldsymbol{h}_{p}\right)}\left[\log p\left(\boldsymbol{y}_{t} \mid \boldsymbol{f}_{t}\right)\right]}}_{\text {closed-form solution }} \begin{aligned}
-\mathrm{KL}(q(\boldsymbol{H}) \| p(\boldsymbol{H}))-\operatorname{KL}\left(q\left(\boldsymbol{F}_{Z}\right) \| p\left(\boldsymbol{F}_{Z}\right)\right)
\end{aligned}
\end{aligned}
$$

[^0]: Deisenroth \& Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search

