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Challenges in Robot Learning N

m Automatic adaption in robotics M Learning
m Practical constraint: data efficiency

m Models are useful for data-efficient learning in robotics
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3 Models for Data-Efficient Robot Learning .

Models for Robotics
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Probabilistic models
» Fast reinforcement learning
Hierarchical models
» Infer task similarities within a meta-learning framework

Physically meaningful models
» Encode real-world constraints into learning
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Models for Robotics

Hierarchical
Meaningful

Carl Rasmussen Dieter Fox
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Reinforcement Learning and Optimal Control ,

wt+1=f(a:t,.)+'w, .=7r(.’1:t,0)
X ~. 2 A ¢

State Control Policy Policy parameters
Transition function
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Reinforcement Learning and Optimal Control ,

) = /(@) @) + w, @ -~ (= 0)
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State Control Policy Policy parameters
Transition function

Objective (Controller Learning)

Find policy parameters 6* that minimize the expected long-term cost

J0) =" Ele(@)6],  plwo) =N (. D).

t=1

Instantaneous cost ¢(x;), e.g., |z — wtargetHQ

» Typical objective in optimal control and reinforcement learning
(Bertsekas, 2005; Sutton & Barto, 1998)
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Fast Reinforcement Learning .

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Fast Reinforcement Learning .

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]
PILCO Framework: High-Level Steps

Probabilistic model for transition function
» System identification

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Fast Reinforcement Learning .

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]
PILCO Framework: High-Level Steps

Probabilistic model for transition function
» System identification

Compute long-term state evolution p(x10), ..., p(xr|0)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Fast Reinforcement Learning .

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]

PILCO Framework: High-Level Steps

Probabilistic model for transition function
» System identification

Compute long-term state evolution p(x10), ..., p(xr|0)

Policy improvement

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Fast Reinforcement Learning .

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]

PILCO Framework: High-Level Steps

Probabilistic model for transition function
» System identification

Compute long-term state evolution p(x10), ..., p(xr|0)
Policy improvement

Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Fast Reinforcement Learning .

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]

PILCO Framework: High-Level Steps

Probabilistic model for transition function f
» System identification

Compute long-term predictions p(x;|0),...,p(x7|0)
Policy improvement

Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Model Learning (System Identification) s

Model learning problem: Find a function f : x — f(z) =y
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X

Observed function values
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Model Learning (System Identification) s

Model learning problem: Find a function f : x — f(z) =y

5 4321012345678
X

Plausible model
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Model Learning (System Identification) s

Model learning problem: Find a function f : x — f(z) =y

5 4 3210123458678
X
Plausible model

Predictions? Decision Making?
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Model Learning (System Identification) s

Model learning problem: Find a function f : x — f(z) =y

5 4 3210123458678
X
More plausible models

Predictions? Decision Making? Model Errors!
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Model Learning (System Identification) s

Model learning problem: Find a function f : x — f(z) =y

5 4321012345678
X

Distribution over plausible functions
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Model Learning (System Identification) s

Model learning problem: Find a function f : x — f(z) =y

5432101234567 8
X
Distribution over plausible functions

» Express uncertainty about the underlying function to be
robust to model errors

» Gaussian process for model learning
(Rasmussen & Williams, 2006)
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Fast Reinforcement Learning .

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]

PILCO Framework: High-Level Steps

Probabilistic model for transition function f
» System identification

Compute long-term predictions p(x;|0),...,p(x7|0)
Policy optimization via gradient descent

Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Standard Benchmark: Cart-Pole Swing-up A

m Swing up and balance a freely swinging pendulum on a cart
m No knowledge about nonlinear dynamics » Learn from scratch

m Cost function ¢(x) = 1 — exp(—|z — wtargetHz)

m Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
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https://github.com/ICL-SML/pilco-matlab

Standard Benchmark: Cart-Pole Swing-up

C: Coulom 2002
KK: Kimura & Kobayashi 1999
D: Doya 2000
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m Swing up and balance a freely swinging pendulum on a cart
m No knowledge about nonlinear dynamics M Learn from scratch

m Cost function ¢(x) = 1 — exp(—|z — cctargetHz)

m Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
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https://github.com/ICL-SML/pilco-matlab

Standard Benchmark: Cart-Pole Swing-up

C: Coulom 2002
KK: Kimura & Kobayashi 1999
D: Doya 2000
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RT: Raiko & Tornio 2009
pilco: Deisenroth & Rasmussen 2011
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Swing up and balance a freely swinging pendulum on a cart

No knowledge about nonlinear dynamics » Learn from scratch

[
[

m Cost function c(z) = 1 — exp(—|& — Trarget|?)

m Unprecedented learning speed compared to state-of-the-art
[

Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
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https://github.com/ICL-SML/pilco-matlab

Wide Applicability

with P Englert, A Paraschos, ] Peters with A Kupcsik, | Peters, G Neumann

B Bischoff (Bosch), ESANN 2013 A McHutchon (U Cmbridge) B Bischoff (Bosch), ECML 2013
» Application to a wide range of robotic systems

Deisenroth et al. (RSS, 2011): Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning
Englert et al. (ICRA, 2013): Model-based Imitation Learning by Probabilistic Trajectory Matching

Deisenroth et al. (ICRA, 2014): Multi-Task Policy Search for Robotics

Kupcsik et al. (AIJ, 2017): Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills
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Summary (1) N

m In robotics, data-efficient learning is critical
m Probabilistic, model-based RL approach

m Reduce model bias
m Unprecedented learning speed
m Wide applicability
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Models for Robotics

Probabilistic
Hierarchical

Meaningful

Steind6r Seemundsson  Katja Hofmann
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Meta Learning A

YT

Meta Learning (Schmidhuber 1987)

Generalize knowledge from known tasks to new (related) tasks
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Meta Learning 8

DR

Meta Learning (Schmidhuber 1987)

Generalize knowledge from known tasks to new (related) tasks

m Different robot configurations (link lengths, weights, ...)

m Re-use experience gathered so far generalize learning to new
dynamics that are similar
» Accelerated learning
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Approach s

SCET

m Separate global and task-specific properties

m Shared global parameters describe general dynamics

m Describe task-specific (local) properties with latent variable
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Approach s

SCET

m Separate global and task-specific properties

m Shared global parameters describe general dynamics

m Describe task-specific (local) properties with latent variable

m Online variational inference of local properties
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Meta Model Learning with Latent Variables .,

Yy = f (wta hp)
m GP captures global properties of the dynamics

m Latent variable h, encodes local properties
» Variational inference to find a posterior on latent task

Seemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Meta-RL (Cart Pole): Few-Shot Generalization ,

100
80
60

10

Success Rate (%)

—J— mLGpP
SGP-1
—F— sGP-ML

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Trials

m Train on 6 tasks with different configurations (length /mass)
m Few-shot generalization on 4 unseen configurations

m Success: solve all 10 (6 training + 4 test) tasks
[
[
[

Meta learning: blue

Aggregated experience model (no latents): green

» Meta RL generalizes well to unseen tasks

Seemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Summary (2)

m Generalize knowledge from known situations to unseen ones
» Few-shot learning

m Latent variable can be used to infer task similarities

m Significant speed-up in model learning and model-based RL
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Models for Robotics

Probabilistic

Hierarchical
Meaningful
Models

e

Steind6r Seemundsson  Alexander Terenin Katja Hofmann
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Physically Meaningful Models "

Equations of motion

_ d(oL) _ 9L
“—dt(aq) dq

m Goal: Data efficiency and interpretability

m Inductive biases to account for physical/mechanical properties
(e.g., conservation laws, configuration constraints)
» Learn dynamical systems that are “meaningful”
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Neural Networks as Dynamical Systems "

Approach:
m Euler discretiztion of continuous-time dynamical system
T T-1
o(T)wo = | folz(t)dt ~ zo+h ), fola,t)
t=0 t=0

m Deep residual network
(E, 2017; Haber & Ruthotto, 2017; Chen et al., 2018)
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Example: Pendulum

m ODE: ) = sm&

n Observatmn: y=10,0]"
m Training data: 15 seconds (150 data points)

—— Ground Truth ®  ResNet % Observations

t=0.1s MSE= 0.0

5.0

Marc Deisenroth (UCL) Useful Models for Robot Learning March 5, 2020
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Example: Pendulum with Noisy Observations ,

m ODE: () = —9sinf
m Observation: y = [0,0]T +¢, ¢~ N(0,0.33%1)
m Training data: 15 seconds

Ground Truth ®  ResNet % Observations

t=0.1s MSE= 0.0

0
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Example: Pendulum with Noisy Observations ,

m ODE: () = —9sinf
m Observation: y = [0,0]T +¢, ¢~ N(0,0.33%1)
m Training data: 15 seconds

Ground Truth ®  ResNet % Observations

t=0.1s MSE= 0.0

-2 -1 0 2
0

m Low prediction quality
m Does not obey physics
m ResNet does not conserve energy
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Building Physics into Network Structure "

m Lagrangian: Encodes “type” of physics, symmetries.
L(q(t),4(t))

Marc Deisenroth (UCL) Useful Models for Robot Learning March 5, 2020 24



Building Physics into Network Structure "

m Lagrangian: Encodes “type” of physics, symmetries.
L(q(t),4(t))

m Hamilton’s Principle:

b . SA
A= f La(D).a(n)dt, 5oms =0
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Building Physics into Network Structure "

m Lagrangian: Encodes “type” of physics, symmetries.
L(q(t),4(t))

m Hamilton’s Principle:

b . SA
A= f La(D).a(n)dt, 5oms =0

First idea:
m Learn Lagrangian L instead of dynamics
m Encode physical properties via L (e.g., Lutter et al., 2019;
Greydanus et al., 2019)
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Variational Integrators s

e Euler

. Variational
Integrator

Second idea: Discretize in a way that preserves the physics
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Variational Integrators s

e Euler

. Variational
Integrator

Second idea: Discretize in a way that preserves the physics
m Conservative, separable Newtonian system:

Lo(q,q) = Ty(q) — Up(q) = I%GTMMI— Uy(q)

kinetic potential
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Variational Integrators s

e Euler

. Variational
Integrator

Second idea: Discretize in a way that preserves the physics
m Conservative, separable Newtonian system:

Lo(q,q) = Ty(q) — Up(q) = I%qTngl— Uy(q)

kinetic potential

m Discretize action integral A
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Variational Integrators s

e Euler

. Variational
Integrator

Second idea: Discretize in a way that preserves the physics
m Conservative, separable Newtonian system:

Lo(q,q) = Ty(q) — Up(q) = I%GTMMI— Uy(q)

kinetic potential

m Discretize action integral A
m Explicit variational integrator

L+l = f9(w17t7 h) y Lt = [Qt> Qt—l]
with initial condition x

Marc Deisenroth (UCL) Useful Models for Robot Learning March 5, 2020 25



Variational Integrators: Properties .

e Euler

. Variational
Integrator

m Physical properties (e.g., conservation laws) automatically
enforced

m Flexibility retained to model Uy (e.g., with a neural network)

m Notions of kinetic and potential energy
» Increased interpretability
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Example: Pendulum with Noisy Observations ,

—— Ground Truth ®  ResNet X Observations

t=0.1s MSE= 0.0

Seemundsson et al. (AISTATS 2020): Variational Integrator Networks for Physically Structured Embeddings
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Example: Pendulum with Noisy Observations ,

—— Ground Truth ®  ResNet X Observations

t=0.1s MSE= 0.0

m Good predictive performance
m Obeys physics
m Conserves energy

Seemundsson et al. (AISTATS 2020): Variational Integrator Networks for Physically Structured Embeddings

Useful Models for Robot Learning March 5, 2020

Marc Deisenroth (UCL)
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Learning from Pixels

= Ground Truth

t=0.0s

Setting:
m Observations: 28 x 28 pixel images

m Training data: 60 images (6 seconds of pendulum movement)

Seemundsson et al. (AISTATS 2020): Variational Integrator Networks for Physically Structured Embeddings
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Learning from Pixels

= Ground Truth

t=0.0s

Setting:

m Observations: 28 x 28 pixel images

m Training data: 60 images (6 seconds of pendulum movement)
Approach:

m Variational auto-encoder to embed pixels in low-dimensional
space
m VIN within low-dimensional space

Seemundsson et al. (AISTATS 2020): Variational Integrator Networks for Physically Structured Embeddings
Marc Deisenroth (UCL) Useful Models for Robot Learning March 5, 2020 28



Results

mmm Ground Truth mmm Ground Truth mm Ground Truth

t=0.0s t=0.0s t=0.0s

m Residual RNN

m VIN

m VIN on SO(2)

m Code: https://tinyurl.com/yx3yhhvo

Seemundsson et al. (AISTATS 2020): Variational Integrator Networks for Physically Structured Embeddings
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Summary (3)

& o
7 10s 5‘ 20s D0s
JPiss @ 10s §'10s
* Euler R = =i
5s S, L 95
Variational 4205 155 . 0k
.
Integrator 1 q 4
mmm= ResRNN VIN-VV s VIN-SO(2)

m Encode physics constraints when learning predictive models
m Variational integrator instead of Euler discretization

m Can be combined with VAE to learn predictive models from
image observations

m Data efficient and interpretable
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Models for Robotics
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m Data efficiency is a practical challenge for autonomous robots
m Three useful models for data-efficient learning in robotics
Probabilistic models for fast reinforcement learning
Hierarchical models for learning task similarities within a
meta-learning framework
Physically meaningful models to encode real-world constraints
into learning

Marc Deisenroth (UCL) Useful Models for Robot Learning March 5, 2020
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Models for Robotics
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m Data efficiency is a practical challenge for autonomous robots
m Three useful models for data-efficient learning in robotics
Probabilistic models for fast reinforcement learning
Hierarchical models for learning task similarities within a
meta-learning framework
Physically meaningful models to encode real-world constraints
into learning

Thank you for your attention
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Learning from Noisy Data: Pendulum

RMSE
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q Time step q Time step

= Ground truth

Pendulum System. Left: 150 observations; Right: 750 observations.

Seemundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings
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Learning from Noisy Data: Pendulum

i L s
4 >y 4 4
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q Time step q Time step
== Ground truth ~—— Baseline NN

Pendulum System. Left: 150 observations; Right: 750 observations.

m Baseline neural network: Dissipates/adds energy for low and
moderate data

Seemundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings
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Learning from Noisy Data: Pendulum

4 - s
4 >y 4 4
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-1 0 1 0 5 10 15 20 -2 0 20 5 10 15 20
q Time step q Time step
e Ground truth ~—— Baseline NN —— HNN

Pendulum System. Left: 150 observations; Right: 750 observations.

m Baseline neural network: Dissipates/adds energy for low and

moderate data
m Hamiltonian neural network (Greydanus et al., 2019): Overfits

in low-data regime

Seemundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings
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Learning from Noisy Data: Pendulum

..MO““UN“ 0 5 o
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1

Predictions
Predictions

05 10 15 20 S04
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@
F75 S -4
T T T
0 5 10 15 20 -2
q Time step q Time step
== Ground truth ~—— Baseline NN —— HNN —— VIN

Pendulum System. Left: 150 observations; Right: 750 observations.

m Baseline neural network: Dissipates/adds energy for low and
moderate data

m Hamiltonian neural network (Greydanus et al., 2019): Overfits
in low-data regime

m Variational integrator network: Conserves energy and
generalizes better in both regimes

Seemundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings
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Latent Embeddings of Time Series
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(a) VAE (b) Dynamic VAE (c) Lie Group VAE
(d) VIN-S0(2) (e) VIN-SO(2) with (f) Ground Truth
fixed M
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