

Data-Efficient Reinforcement Learning with Probabilistic Models

Marc Deisenroth Centre for Artificial Intelligence Department of Computer Science University College London

Aalto University, Helsinki, Finland February 13, 2020

9 @mpd37

m.deisenroth@ucl.ac.uk
https://deisenroth.cc

Autonomous Robots: Key Challenges

 Three key challenges in autonomous robots: Modeling. Predicting. Decision making.

UC

Robotics

Autonomous Robots: Key Challenges

- Three key challenges in autonomous robots: Modeling. Predicting. Decision making.
- No human in the loop ▶ "Learn" from data
- Automatically extract information
- Data-efficient (fast) learning
- Uncertainty: sensor noise, unknown processes, limited knowledge, ...

Robotics

Autonomous Robots: Key Challenges

- Three key challenges in autonomous robots: Modeling. Predicting. Decision making.
- No human in the loop ▶ "Learn" from data
- Automatically extract information
- Data-efficient (fast) learning
- Uncertainty: sensor noise, unknown processes, limited knowledge, ...

Reinforcement learning subject to data efficiency

Robotics

Data-Efficient Reinforcement Learning

1 Model-based RL

Data-efficient decision making

2 Model predictive RL

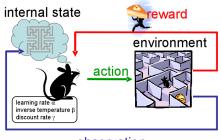
Speed up learning further by online planning

- 3 Meta learning using latent variables
 - ➤ Generalize knowledge to new situations

Marc Deisenroth (UCL)

Reinforcement Learning

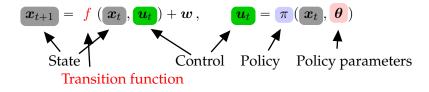
5



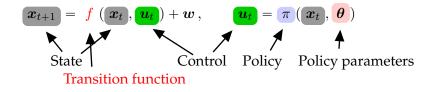
observation

- Learn to solve a task
- Trial-and-error interaction with the environment
- Feedback via reward/cost function

Reinforcement Learning and Optimal Control



Reinforcement Learning and Optimal Control



Objective (Controller Learning)

Find policy parameters θ^* that minimize the expected long-term cost

$$J(oldsymbol{ heta}) = \sum_{t=1}^T \mathbb{E}[c(oldsymbol{x}_t)|oldsymbol{ heta}], \qquad p(oldsymbol{x}_0) = \mathcal{N}ig(oldsymbol{\mu}_0, \, oldsymbol{\Sigma}_0ig).$$

Instantaneous cost $c(\boldsymbol{x}_t)$, e.g., $\|\boldsymbol{x}_t - \boldsymbol{x}_{target}\|^2$

➤ Typical objective in optimal control and reinforcement learning (Bertsekas, 2005; Sutton & Barto, 1998)

Marc Deisenroth (UCL)

Data-Efficient Reinforcement Learning with Probabilistic Models

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

≜||((

PILCO Framework: High-Level Steps

1 Probabilistic model for transition function f

System identification

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

≜|||(

PILCO Framework: High-Level Steps

- **1** Probabilistic model for transition function f
 - System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

PILCO Framework: High-Level Steps

- **1** Probabilistic model for transition function f
 - System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- 3 Policy improvement

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

PILCO Framework: High-Level Steps

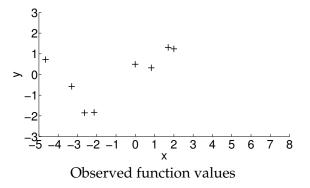
- **1** Probabilistic model for transition function f
 - System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- 3 Policy improvement
- 4 Apply controller

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

PILCO Framework: High-Level Steps

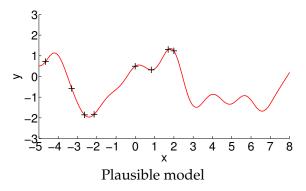
- Probabilistic model for transition function *f* System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- 3 Policy improvement
- 4 Apply controller

Model learning problem: Find a function $f : x \mapsto f(x) = y$



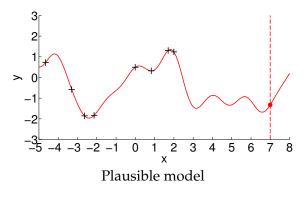
•

Model learning problem: Find a function $f : x \mapsto f(x) = y$



A

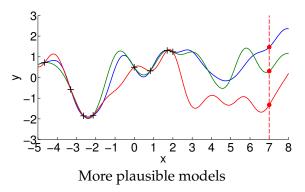
Model learning problem: Find a function $f : x \mapsto f(x) = y$



•

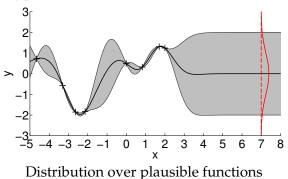
Predictions? Decision Making?

Model learning problem: Find a function $f : x \mapsto f(x) = y$

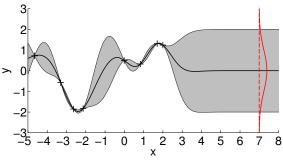


Predictions? Decision Making? Model Errors!

Model learning problem: Find a function $f : x \mapsto f(x) = y$



Model learning problem: Find a function $f : x \mapsto f(x) = y$



Distribution over plausible functions

Express uncertainty about the underlying function to be robust to model errors

➤ Gaussian process for model learning (Rasmussen & Williams, 2006)

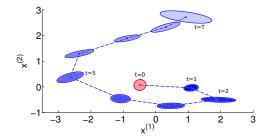
Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models Februa

AUG

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

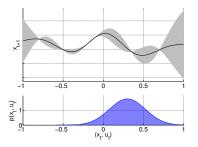
PILCO Framework: High-Level Steps

- **Probabilistic model for transition function** f
 - System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- 3 Policy improvement
- 4 Apply controller



• Iteratively compute $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control



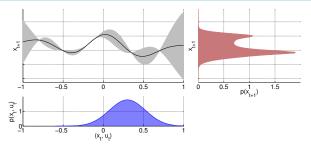
• Iteratively compute $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$

$$\underbrace{p(\boldsymbol{x}_{t+1}|\boldsymbol{x}_t, \boldsymbol{u}_t)}_{\text{GP prediction}} \underbrace{p(\boldsymbol{x}_t, \boldsymbol{u}_t|\boldsymbol{\theta})}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}$$

UCL

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models February 13, 2020 11



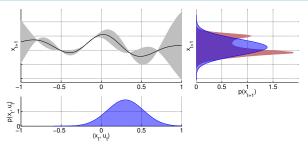
• Iteratively compute $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$

$$p(\boldsymbol{x}_{t+1}|\boldsymbol{\theta}) = \iiint \underbrace{p(\boldsymbol{x}_{t+1}|\boldsymbol{x}_t, \boldsymbol{u}_t)}_{\text{GP prediction}} \underbrace{p(\boldsymbol{x}_t, \boldsymbol{u}_t|\boldsymbol{\theta})}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} df \, d\boldsymbol{x}_t \, d\boldsymbol{u}_t$$

UC

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models February 13, 2020 11



• Iteratively compute $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$

$$p(\boldsymbol{x}_{t+1}|\boldsymbol{\theta}) = \iiint \underbrace{p(\boldsymbol{x}_{t+1}|\boldsymbol{x}_t, \boldsymbol{u}_t)}_{\text{GP prediction}} \underbrace{p(\boldsymbol{x}_t, \boldsymbol{u}_t|\boldsymbol{\theta})}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} df \, d\boldsymbol{x}_t \, d\boldsymbol{u}_t$$

➤ GP moment matching (Girard et al., 2002; Quiñonero-Candela et al., 2003)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Marc Deisenroth (UCL)

Data-Efficient Reinforcement Learning with Probabilistic Models

AUC

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

PILCO Framework: High-Level Steps

- **1** Probabilistic model for transition function f
 - System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- **3** Policy improvement
 - Compute expected long-term cost $J(\theta)$
 - Find parameters $\boldsymbol{\theta}$ that minimize $J(\boldsymbol{\theta})$
- 4 Apply controller

Policy Improvement

UCL

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_{t} \mathbb{E}[c(\boldsymbol{x}_{t})|\boldsymbol{\theta}]$

• Know how to predict $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$

Policy Improvement

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

- Know how to predict $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- Compute

$$\mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}] = \int c(\boldsymbol{x}_t) \mathcal{N}(\boldsymbol{x}_t | \boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t) d\boldsymbol{x}_t, \quad t = 1, \dots, T,$$

and sum them up to obtain $J(\boldsymbol{\theta})$

Policy Improvement

Objective

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

- Know how to predict $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- Compute

$$\mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}] = \int c(\boldsymbol{x}_t) \mathcal{N}(\boldsymbol{x}_t | \boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t) d\boldsymbol{x}_t, \quad t = 1, \dots, T,$$

and sum them up to obtain $J(\boldsymbol{\theta})$

- Analytically compute gradient $dJ(\theta)/d\theta$
- Standard gradient-based optimizer (e.g., BFGS) to find θ^*

Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$

≜|||(

PILCO Framework: High-Level Steps

- **1** Probabilistic model for transition function f
 - System identification
- 2 Compute long-term predictions $p(\boldsymbol{x}_1|\boldsymbol{\theta}), \dots, p(\boldsymbol{x}_T|\boldsymbol{\theta})$
- 3 Policy improvement
- 4 Apply controller

Standard Benchmark: Cart-Pole Swing-up



- Swing up and balance a freely swinging pendulum on a cart
- No knowledge about nonlinear dynamics → Learn from scratch

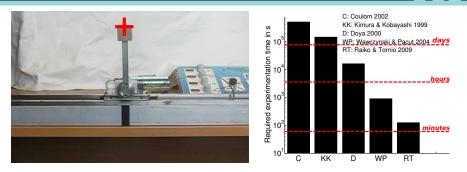
• Cost function $c(\boldsymbol{x}) = 1 - \exp(-\|\boldsymbol{x} - \boldsymbol{x}_{\text{target}}\|^2)$

■ Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models February 13, 2020 15

Standard Benchmark: Cart-Pole Swing-up



15

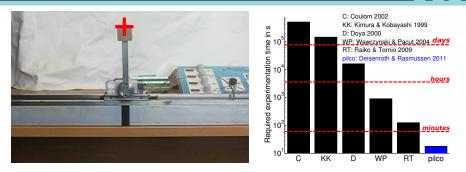
- Swing up and balance a freely swinging pendulum on a cart
- No knowledge about nonlinear dynamics → Learn from scratch
- Cost function $c(\boldsymbol{x}) = 1 \exp(-\|\boldsymbol{x} \boldsymbol{x}_{\text{target}}\|^2)$

■ Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models February 13, 2020

Standard Benchmark: Cart-Pole Swing-up



- Swing up and balance a freely swinging pendulum on a cart
- No knowledge about nonlinear dynamics → Learn from scratch
- Cost function $c(\boldsymbol{x}) = 1 \exp(-\|\boldsymbol{x} \boldsymbol{x}_{\text{target}}\|^2)$
- Unprecedented learning speed compared to state-of-the-art
- Code: https://github.com/ICL-SML/pilco-matlab

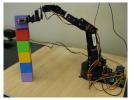
Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search

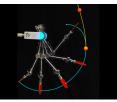
Marc Deisenroth (UCL)

Data-Efficient Reinforcement Learning with Probabilistic Models

Wide Applicability

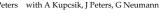
UCL





with P Englert, A Paraschos, J Peters

with D Fox



B Bischoff (Bosch), ESANN 2013

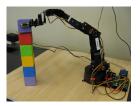
A McHutchon (U Cambridge)

B Bischoff (Bosch), ECML 2013

Application to a wide range of robotic systems

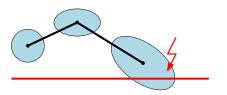
Deisenroth et al. (RSS, 2011): Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning Englert et al. (ICRA, 2013): Model-based Imitation Learning by Probabilistic Trajectory Matching Deisenroth et al. (ICRA, 2014): Multi-Task Policy Search for Robotics Kupcsik et al. (AIJ, 2017): Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models February 13, 2020 16



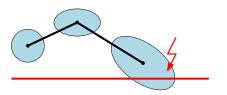
- In robotics, data-efficient learning is critical
- Probabilistic, model-based RL approach
 - Reduce model bias
 - Unprecedented learning speed
 - Wide applicability

Safe Exploration



- Deal with real-world safety constraints (states/controls)
- Use probabilistic model to predict whether state constraints are violated (e.g., Sui et al., 2015; Berkenkamp et al., 2017)
- Adjust policy if necessary (during policy learning)

Safe Exploration



- Deal with real-world safety constraints (states/controls)
- Use probabilistic model to predict whether state constraints are violated (e.g., Sui et al., 2015; Berkenkamp et al., 2017)
- Adjust policy if necessary (during policy learning)
- Safe exploration within an MPC-based RL setting
- \blacktriangleright Optimize control signals u_t directly (no policy parameters)

- Idea: Optimize control signals directly (instead of policy parameters)
- Few parameters to optimize ► Low-dimensional search space
- Open-loop control
 No chance of success (with minor model inaccuracies)

- Idea: Optimize control signals directly (instead of policy parameters)
- Few parameters to optimize ► Low-dimensional search space
- Open-loop control
 No chance of success (with minor model inaccuracies)
- Model predictive control (MPC) turns this into a closed-loop control approach

- Idea: Optimize control signals directly (instead of policy parameters)
- Few parameters to optimize ▶ Low-dimensional search space
- Open-loop control
 No chance of success (with minor model inaccuracies)
- Model predictive control (MPC) turns this into a closed-loop control approach
- Use this within a trial-and-error RL setting

Learned GP model for transition dynamics

- Repeat (while executing the policy):
 - In current state x_t , determine optimal control sequence u_0^*, \ldots, u_{H-1}^*
 - 2 Apply first control u_0^* in state x_t
 - 3 Transition to next state x_{t+1}
 - 4 Update GP transition model

Theoretical Results

 Uncertainty propagation is deterministic (GP moment matching)

▶ Re-formulate system dynamics:

$$z_{t+1} = f_{MM}(z_t, u_t)$$

$$z_t = \{\mu_t, \Sigma_t\} \implies \text{Collects moments}$$

Theoretical Results

Uncertainty propagation is deterministic (GP moment matching)
 N Be (second to protect a sector a demonstration)

▶ Re-formulate system dynamics:

 $z_{t+1} = f_{MM}(z_t, u_t)$ $z_t = \{\mu_t, \Sigma_t\} \implies \text{Collects moments}$

- Deterministic system function that propagates moments
- Lipschitz continuity (under mild assumptions) implies that we can apply Pontryagin's Minimum Principle
 Principled treatment of constraints on controls

Theoretical Results

Uncertainty propagation is deterministic (GP moment matching)

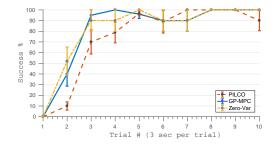
▶ Re-formulate system dynamics:

 $\boldsymbol{z}_{t+1} = f_{MM}(\boldsymbol{z}_t, \boldsymbol{u}_t) \\ \boldsymbol{z}_t = \{\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t\} \quad \blacktriangleright \text{ Collects moments}$

^ | | (

- Deterministic system function that propagates moments
- Lipschitz continuity (under mild assumptions) implies that we can apply Pontryagin's Minimum Principle
 Principled treatment of constraints on controls
- Use predictive uncertainty to check violation of state constraints

Learning Speed (Cart Pole)

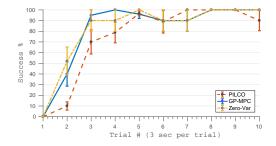


 Zero-Var: Only use the mean of the GP, discard variances for long-term predictions

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

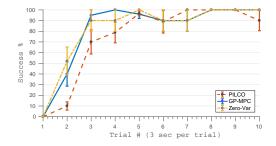
Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models February 13, 2020 23

Learning Speed (Cart Pole)



- Zero-Var: Only use the mean of the GP, discard variances for long-term predictions
- MPC: Increased data efficiency (40% less experience required than PILCO)

Learning Speed (Cart Pole)

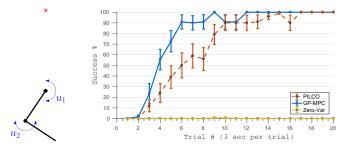


- Zero-Var: Only use the mean of the GP, discard variances for long-term predictions
- MPC: Increased data efficiency (40% less experience required than PILCO)
- MPC more robust to model inaccuracies than a parametrized feedback controller

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

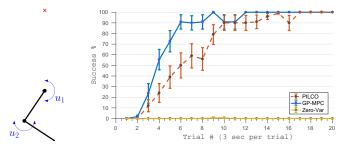
Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models February 13, 2020 23

Learning Speed (Double Pendulum)



- GP-MPC maintains the same improvement in data efficiency
- Zero-Var fails:
 - Gets stuck in local optimum near start state
 - Insufficient exploration due to lack of uncertainty propagation

Learning Speed (Double Pendulum)



- GP-MPC maintains the same improvement in data efficiency
- Zero-Var fails:
 - Gets stuck in local optimum near start state
 - Insufficient exploration due to lack of uncertainty propagation
- Although MPC is fairly robust to model inaccuracies we cannot get away without uncertainty propagation

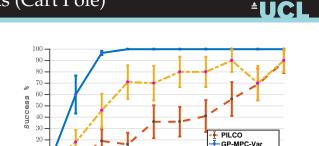
Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Marc Deisenroth (UCL)

Data-Efficient Reinforcement Learning with Probabilistic Models

Safety Constraints (Cart Pole)

U



GP-MPC-Mean

10

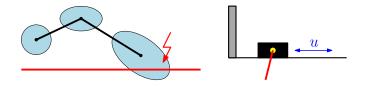


Propagating model uncertainty important for safety

10 -

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models February 13, 2020 25



- Probabilistic prediction models for safe exploration
- Uncertainty propagation can be used to reduce violation of safety constraints
- MPC framework increases robustness to model errors
 Increased data efficiency

27

Meta Learning

UCL

Meta Learning

Generalize knowledge from known tasks to new (related) tasks

Meta Learning

UCL

Meta Learning

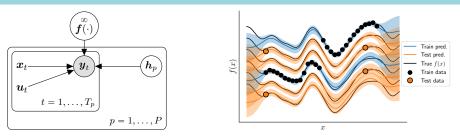
Generalize knowledge from known tasks to new (related) tasks

- Different robot configurations (link lengths, weights, ...)
- Re-use experience gathered so far generalize learning to new dynamics that are similar
 A coolerated learning
 - Accelerated learning

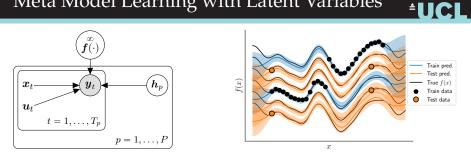
- Separate global and task-specific properties
- Shared global parameters describe general dynamics
- Describe task-specific (local) configurations with latent variable

- Separate global and task-specific properties
- Shared global parameters describe general dynamics
- Describe task-specific (local) configurations with latent variable
- Online variational inference of (unseen) configurations

UCL

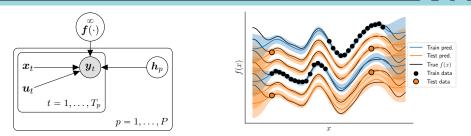


$$\boldsymbol{y}_t = \boldsymbol{f}(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{h}_p)$$



$$\boldsymbol{y}_t = \boldsymbol{f}(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{h}_p)$$

■ GP captures global properties of the dynamics

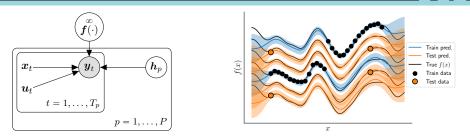


AUC

30

$$\boldsymbol{y}_t = \boldsymbol{f}(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{h}_p)$$

- GP captures global properties of the dynamics
- Latent variable h_p describes local configuration
 Variational inference to find a posterior on latent configuration



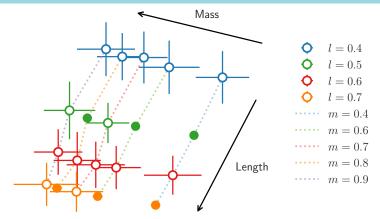
$$\boldsymbol{y}_t = \boldsymbol{f}(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{h}_p)$$

- GP captures global properties of the dynamics
- Latent variable h_p describes local configuration
 Variational inference to find a posterior on latent configuration
- Fast online inference of new configurations (no model re-training required)

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes

Latent Embeddings

[±]UCL



Latent variable *h* encodes length *l* and mass *m* of the cart pole
6 training tasks, 14 held-out test tasks

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models Fe

Meta-RL (Cart Pole): Training

UCL

■ Pre-trained on 6 training configurations until solved

Model	Training (s)	Description
Independent	16.1 ± 0.4	Independent GP-MPC
Aggregated	23.7 ± 1.4	Aggregated experience (no latents)
Meta learning	$\textbf{15.1} \pm \textbf{0.5}$	Aggregated experience (with latents)

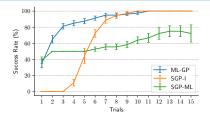
Meta learning can help speeding up RL

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes

Marc Deisenroth (UCL)

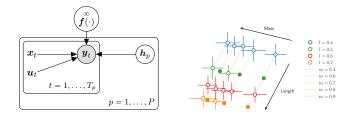
Data-Efficient Reinforcement Learning with Probabilistic Models

Meta-RL (Cart Pole): Few-Shot Generalization



- Few-shot generalization on 4 unseen configurations
- Success: solve all 10 (6 training + 4 test) tasks
- Meta learning: blue
- Independent (GP-MPC): orange
- Aggregated experience model (no latents): green

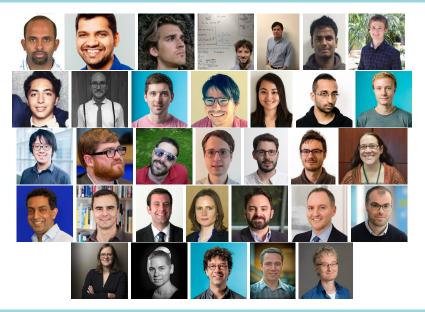
Meta RL generalizes well to unseen tasks



- Generalize knowledge from known situations to unseen ones
 Few-shot learning
- Latent variable can be used to infer task similarities
- Significant speed-up in model learning and model-based RL

Team and Collaborators

[•]UCL



Marc Deisenroth (UCL)

Data-Efficient Reinforcement Learning with Probabilistic Models

- **Data efficiency** is a practical challenge for autonomous robots
- Three pillars of data-efficient reinforcement learning for autonomous robots
 - Model-based reinforcement learning with learned probabilistic models for fast learning from scratch
 - 2 Model predictive control with learned dynamics models accelerate learning and allow for safe exploration
 - 3 Meta learning using latent variables to generalize knowledge to new situations
- **Key to success:** Probabilistic modeling and Bayesian inference

- **Data efficiency** is a practical challenge for autonomous robots
- Three pillars of data-efficient reinforcement learning for autonomous robots
 - Model-based reinforcement learning with learned probabilistic models for fast learning from scratch
 - 2 Model predictive control with learned dynamics models accelerate learning and allow for safe exploration
 - 3 Meta learning using latent variables to generalize knowledge to new situations

Key to success: Probabilistic modeling and Bayesian inference

Thank you for your attention

References I

- ¹UCL
- F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause. Safe Model-based Reinforcement Learning with Stability Guarantees. In Advances in Neural Information Processing Systems, 2017.
- [2] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 of Optimization and Computation Series. Athena Scientific, Belmont, MA, USA, 3rd edition, 2005.
- [3] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2 of Optimization and Computation Series. Athena Scientific, Belmont, MA, USA, 3rd edition, 2007.
- [4] B. Bischoff, D. Nguyen-Tuong, T. Koller, H. Markert, and A. Knoll. Learning Throttle Valve Control Using Policy Search. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, 2013.
- [5] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox. Multi-Task Policy Search for Robotics. In Proceedings of the International Conference on Robotics and Automation, 2014.
- [6] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian Processes for Data-Efficient Learning in Robotics and Control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):408–423, 2015.
- [7] M. P. Deisenroth and C. E. Rasmussen. PILCO: A Model-Based and Data-Efficient Approach to Policy Search. In Proceedings of the International Conference on Machine Learning, 2011.
- [8] M. P. Deisenroth, C. E. Rasmussen, and D. Fox. Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning. In Proceedings of Robotics: Science and Systems, 2011.
- [9] P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Model-based Imitation Learning by Probabilistic Trajectory Matching. In Proceedings of the IEEE International Conference on Robotics and Automation, 2013.
- [10] P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Probabilistic Model-based Imitation Learning. Adaptive Behavior, 21:388–403, 2013.
- [11] A. Girard, C. E. Rasmussen, and R. Murray-Smith. Gaussian Process Priors with Uncertain Inputs: Multiple-Step Ahead Prediction. Technical Report TR-2002-119, University of Glasgow, 2002.
- [12] S. Kamthe and M. P. Deisenroth. Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control. In Proceedings of the International Conference on Artificial Intelligence and Statistics, 2018.

References II

- [•]UCL
- [13] A. Kupcsik, M. P. Deisenroth, J. Peters, L. A. Poha, P. Vadakkepata, and G. Neumann. Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills. *Artificial Intelligence*, 2017.
- [14] T. X. Nghiem and C. N. Jones. Data-driven Demand Response Modeling and Control of Buildings with Gaussian Processes. In Proceedings of the American Control Conference, 2017.
- [15] J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E. Rasmussen. Propagation of Uncertainty in Bayesian Kernel Models—Application to Multiple-Step Ahead Forecasting. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, volume 2, pages 701–704, Apr. 2003.
- [16] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2006.
- [17] S. Sæmundsson, K. Hofmann, and M. P. Deisenroth. Meta Reinforcement Learning with Latent Variable Gaussian Processes. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2018.
- [18] Y. Sui, A. Gotovos, J. W. Burdick, and A. Krause. Safe Exploration for Optimization with Gaussian Processes. In Proceedings of the International Conference on Machine Learning, 2015.
- [19] M. K. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In Proceedings of the International Conference on Artificial Intelligence and Statistics, 2009.

■ Controller:

$$\tilde{\pi}(\boldsymbol{x}, \boldsymbol{\theta}) = \sum_{k=1}^{K} w_k \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^\top \boldsymbol{\Lambda}(\boldsymbol{x} - \boldsymbol{\mu}_k)\right)$$
$$u = \pi(\boldsymbol{x}, \boldsymbol{\theta}) = u_{\max} \sigma(\tilde{\pi}(\boldsymbol{x}, \boldsymbol{\theta})) \in \left[-u_{\max}, u_{\max}\right],$$

UCL

where σ is a squashing function.

■ Controller:

$$\tilde{\pi}(\boldsymbol{x}, \boldsymbol{\theta}) = \sum_{k=1}^{K} w_k \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^\top \boldsymbol{\Lambda}(\boldsymbol{x} - \boldsymbol{\mu}_k)\right)$$
$$u = \pi(\boldsymbol{x}, \boldsymbol{\theta}) = u_{\max} \sigma(\tilde{\pi}(\boldsymbol{x}, \boldsymbol{\theta})) \in \left[-u_{\max}, u_{\max}\right],$$

UCL

where σ is a squashing function.

Parameters:

$$\boldsymbol{\theta} := \{w_k, \boldsymbol{\mu}_k, \boldsymbol{\Lambda}\}$$

■ Controller:

$$\tilde{\pi}(\boldsymbol{x},\boldsymbol{\theta}) = \sum_{k=1}^{K} w_k \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_k)^\top \boldsymbol{\Lambda}(\boldsymbol{x}-\boldsymbol{\mu}_k)\right)$$
$$u = \pi(\boldsymbol{x},\boldsymbol{\theta}) = u_{\max}\sigma(\tilde{\pi}(\boldsymbol{x},\boldsymbol{\theta})) \in \left[-u_{\max}, u_{\max}\right],$$

where σ is a squashing function.

Parameters:

$$\boldsymbol{ heta} := \{w_k, \boldsymbol{\mu}_k, \boldsymbol{\Lambda}\}$$

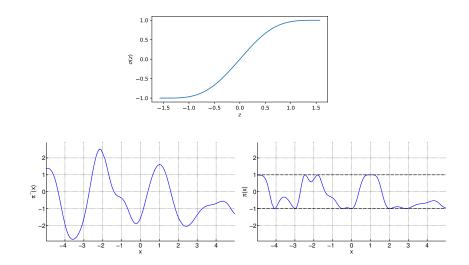
■ Squashing function:

$$\sigma(z) = \frac{9}{8}\sin(z) + \frac{1}{8}\sin(3z)$$

Marc Deisenroth (UCL)

Data-Efficient Reinforcement Learning with Probabilistic Models

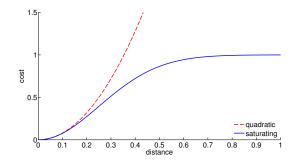
Squashing Function



Data-Efficient Reinforcement Learning with Probabilistic Models

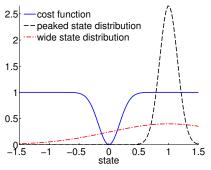
Cost Functions

■ Quadratic cost $c(\boldsymbol{x}) = (\boldsymbol{x} - \boldsymbol{x}_{target})^{\top} \boldsymbol{W}(\boldsymbol{x} - \boldsymbol{x}_{target})$ ■ Saturating cost $c(\boldsymbol{x}) = 1 - \exp\left(-(\boldsymbol{x} - \boldsymbol{x}_{target})^{\top} \boldsymbol{W}(\boldsymbol{x} - \boldsymbol{x}_{target})\right)$



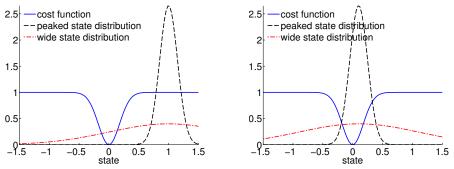
Quadratic cost pays a lot of attention to states "far away"
 Bad idea for exploration

Task: Minimize $\mathbb{E}[c(\boldsymbol{x}_t)]$



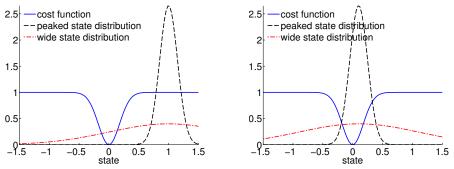
In the early stages of learning, state predictions are expected to be far away from the target

Task: Minimize $\mathbb{E}[c(\boldsymbol{x}_t)]$



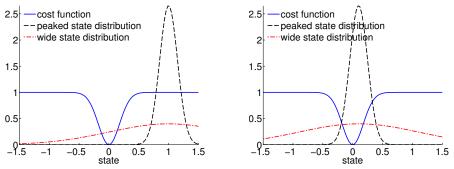
■ In the early stages of learning, state predictions are expected to be far away from the target ➤ Exploration favored

Task: Minimize $\mathbb{E}[c(\boldsymbol{x}_t)]$



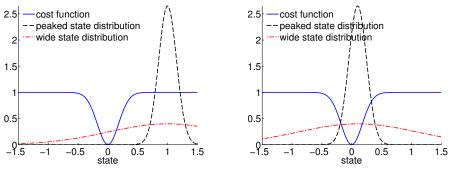
- In the early stages of learning, state predictions are expected to be far away from the target → Exploration favored
- In the final stages of learning, state predictions are expected to be close to the target

Task: Minimize $\mathbb{E}[c(\boldsymbol{x}_t)]$



- In the early stages of learning, state predictions are expected to be far away from the target ➤ Exploration favored
- In the final stages of learning, state predictions are expected to be close to the target → Exploitation favored

Task: Minimize $\mathbb{E}[c(\boldsymbol{x}_t)]$



- In the early stages of learning, state predictions are expected to be far away from the target → Exploration favored
- In the final stages of learning, state predictions are expected to be close to the target ➤ Exploitation favored

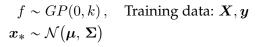
➤ Bayesian treatment: Natural exploration/exploitation trade-off

Marc Deisenroth (UCL)

$f \sim GP(0,k)$, Training data: $\boldsymbol{X}, \boldsymbol{y}$ $\boldsymbol{x}_* \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

 $f \sim GP(0,k)$, Training data: $\boldsymbol{X}, \boldsymbol{y}$ $\boldsymbol{x}_* \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ **AUC**

$$\mathbb{E}_{f,\boldsymbol{x}_{\ast}}[f(\boldsymbol{x}_{\ast})] = \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{f}[f(\boldsymbol{x}_{\ast})|\boldsymbol{x}_{\ast}]\right] = \mathbb{E}_{\boldsymbol{x}_{\ast}}\left[\frac{m_{f}(\boldsymbol{x}_{\ast})}{m_{f}(\boldsymbol{x}_{\ast})}\right]$$



AUC

$$\mathbb{E}_{f,\boldsymbol{x}_{\ast}}[f(\boldsymbol{x}_{\ast})] = \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{f}[f(\boldsymbol{x}_{\ast})|\boldsymbol{x}_{\ast}]\right] = \mathbb{E}_{\boldsymbol{x}_{\ast}}\left[\frac{m_{f}(\boldsymbol{x}_{\ast})}{k(\boldsymbol{x}_{\ast},\boldsymbol{X})(\boldsymbol{K}+\sigma_{n}^{2}\boldsymbol{I})^{-1}\boldsymbol{y}}\right]$$

 $f \sim GP(0,k)$, Training data: X, y $x_* \sim \mathcal{N}(\mu, \Sigma)$ **AUC**

$$\begin{split} \mathbb{E}_{f,\boldsymbol{x}_{*}}[f(\boldsymbol{x}_{*})] &= \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{f}[f(\boldsymbol{x}_{*})|\boldsymbol{x}_{*}]\right] = \mathbb{E}_{\boldsymbol{x}_{*}}\left[\frac{m_{f}(\boldsymbol{x}_{*})}{p}\right] \\ &= \mathbb{E}_{\boldsymbol{x}_{*}}\left[\frac{k(\boldsymbol{x}_{*},\boldsymbol{X})(\boldsymbol{K}+\sigma_{n}^{2}\boldsymbol{I})^{-1}\boldsymbol{y}}{p}\right] \\ &= \boldsymbol{\beta}^{\top}\int k(\boldsymbol{X},\boldsymbol{x}_{*})\mathcal{N}(\boldsymbol{x}_{*} \mid \boldsymbol{\mu},\boldsymbol{\Sigma})d\boldsymbol{x}_{*} \\ \boldsymbol{\beta} &:= (\boldsymbol{K}+\sigma_{n}^{2}\boldsymbol{I})^{-1}\boldsymbol{y} \quad \blacktriangleright \text{ independent of } \boldsymbol{x}_{*} \end{split}$$

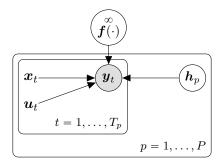
$$\begin{split} & f \sim GP(0,k)\,, \quad \text{Training data: } \boldsymbol{X}, \boldsymbol{y} \\ & \boldsymbol{x}_* \sim \mathcal{N} \big(\boldsymbol{\mu},\, \boldsymbol{\Sigma} \big) \end{split}$$

• Compute $\mathbb{E}[f(\boldsymbol{x}_*)]$

 $\mathbb{E}_{f,\boldsymbol{x}_*}[f(\boldsymbol{x}_*)] = \mathbb{E}_{\boldsymbol{x}} \left[\mathbb{E}_f[f(\boldsymbol{x}_*)|\boldsymbol{x}_*] \right] = \mathbb{E}_{\boldsymbol{x}_*} \left[\frac{m_f(\boldsymbol{x}_*)}{p_1} \right]$ $= \mathbb{E}_{\boldsymbol{x}_*} \left[\frac{k(\boldsymbol{x}_*,\boldsymbol{X})(\boldsymbol{K} + \sigma_n^2 \boldsymbol{I})^{-1} \boldsymbol{y}}{p_1} \right]$ $= \boldsymbol{\beta}^\top \int k(\boldsymbol{X}, \boldsymbol{x}_*) \mathcal{N} \left(\boldsymbol{x}_* \mid \boldsymbol{\mu}, \boldsymbol{\Sigma} \right) d\boldsymbol{x}_*$ $\boldsymbol{\beta} := (\boldsymbol{K} + \sigma_n^2 \boldsymbol{I})^{-1} \boldsymbol{y} \implies \text{independent of } \boldsymbol{x}_*$

- If *k* is a Gaussian (squared exponential) kernel, this integral can be solved analytically
- Variance of $f(\boldsymbol{x}_*)$ can be computed similarly

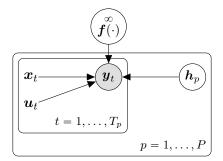
Meta Learning Model



$$f(\cdot) \sim GP$$

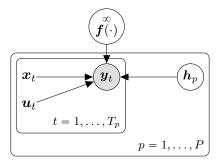
$$p(H) = \prod_{p} p(h_{p}), \quad p(h_{p}) = \mathcal{N}(\mathbf{0}, I)$$

Meta Learning Model



$$\begin{split} \boldsymbol{f}(\cdot) &\sim GP \\ p(\boldsymbol{H}) &= \prod_{p} p(\boldsymbol{h}_{p}) , \quad p(\boldsymbol{h}_{p}) = \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}) \\ p(\boldsymbol{Y}, \boldsymbol{H}, \boldsymbol{f}(\cdot) | \boldsymbol{X}, \boldsymbol{U}) &= \prod_{p=1}^{P} p(\boldsymbol{h}_{p}) \prod_{t=1}^{T_{p}} p(\boldsymbol{y}_{t} | \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{h}_{p}, \boldsymbol{f}(\cdot)) p(\boldsymbol{f}(\cdot)) \\ \boldsymbol{y}_{t} &= \boldsymbol{x}_{t+1} - \boldsymbol{x}_{t} \end{split}$$

Variational Inference in Meta Learning Model



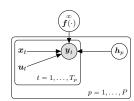
Mean-field variational family:

$$\begin{aligned} q(\boldsymbol{f}(\cdot), \boldsymbol{H}) &= q(\boldsymbol{f}(\cdot))q(\boldsymbol{H}) \\ q(\boldsymbol{H}) &= \prod_{p=1}^{P} \mathcal{N}(\boldsymbol{h}_{p} | \boldsymbol{n}_{p}, \boldsymbol{T}_{p}), \\ q(\boldsymbol{f}(\cdot)) &= \int p(\boldsymbol{f}(\cdot) | \boldsymbol{f}_{Z})q(\boldsymbol{f}_{Z})d\boldsymbol{f}_{Z} \quad \blacktriangleright \text{SV-GP} \text{ (Titsias, 2009)} \end{aligned}$$

Marc Deisenroth (UCL)

Data-Efficient Reinforcement Learning with Probabilistic Models

 $ELBO = \mathbb{E}_{q(\boldsymbol{f}(\cdot),\boldsymbol{H})} \Big[\log \frac{p(\boldsymbol{Y}, \boldsymbol{H}, \boldsymbol{f}(\cdot) | \boldsymbol{X}, \boldsymbol{U})}{q(\boldsymbol{f}(\cdot), \boldsymbol{H})} \Big]$



Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models February 13, 2020 46

$$ELBO = \mathbb{E}_{q(\boldsymbol{f}(\cdot),\boldsymbol{H})} \left[\log \frac{p(\boldsymbol{Y},\boldsymbol{H},\boldsymbol{f}(\cdot)|\boldsymbol{X},\boldsymbol{U})}{q(\boldsymbol{f}(\cdot),\boldsymbol{H})} \right]$$

= $\sum_{p=1}^{P} \sum_{t=1}^{T_p} \mathbb{E}_{q(\boldsymbol{f}_t|\boldsymbol{x}_t,\boldsymbol{u}_t,\boldsymbol{h}_p)q(\boldsymbol{h}_p)} \left[\log p(\boldsymbol{y}_t|\boldsymbol{f}_t) \right]$
- $\mathrm{KL}(q(\boldsymbol{H})||p(\boldsymbol{H})) - \mathrm{KL}(q(\boldsymbol{f}(\cdot))||p(\boldsymbol{f}(\cdot)))$

 $ELBO = \mathbb{E}_{q(\boldsymbol{f}(\cdot),\boldsymbol{H})} \left[\log \frac{p(\boldsymbol{Y}, \boldsymbol{H}, \boldsymbol{f}(\cdot) | \boldsymbol{X}, \boldsymbol{U})}{a(\boldsymbol{f}(\cdot) | \boldsymbol{H})} \right]$ $f^{\infty}(\cdot)$ $= \sum_{p=1}^{P} \sum_{t=1}^{T_p} \mathbb{E}_{q(\boldsymbol{f}_t | \boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{h}_p)q(\boldsymbol{h}_p)} \left[\log p(\boldsymbol{y}_t | \boldsymbol{f}_t) \right]$ h_p $-\operatorname{KL}(q(\boldsymbol{H})||p(\boldsymbol{H})) - \operatorname{KL}(q(\boldsymbol{f}(\cdot))||p(\boldsymbol{f}(\cdot)))$ $t = 1, ..., T_p$ Monte Carlo estimate $=\sum_{n=1}^{P}\sum_{t=1}^{T_{p}}\overline{\mathbb{E}_{q(\boldsymbol{f}_{t}|\boldsymbol{x}_{t},\boldsymbol{u}_{t},\boldsymbol{h}_{p})q(\boldsymbol{h}_{p})}\left[\log p(\boldsymbol{y}_{t}|\boldsymbol{f}_{t})\right]}$ $-\mathrm{KL}(q(\boldsymbol{H})||p(\boldsymbol{H})) - \frac{\mathrm{KL}(q(\boldsymbol{F}_Z)||p(\boldsymbol{F}_Z))}{\mathrm{KL}(q(\boldsymbol{F}_Z)||p(\boldsymbol{F}_Z))}$

closed-form solution