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Autonomous Robots

Vision: Autonomous robots support humans in everyday
activities Fast learning and automatic adaptation

Currently: Data-hungry learning or human guidance

Fully autonomous learning and decision making with little data in
real-life situations

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models January 7, 2020 2



Autonomous Robots

Vision: Autonomous robots support humans in everyday
activities Fast learning and automatic adaptation
Currently: Data-hungry learning or human guidance

Fully autonomous learning and decision making with little data in
real-life situations

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models January 7, 2020 2



Autonomous Robots

Vision: Autonomous robots support humans in everyday
activities Fast learning and automatic adaptation
Currently: Data-hungry learning or human guidance

Fully autonomous learning and decision making with little data in
real-life situations

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models January 7, 2020 2



Central Problem

Data-Efficient Reinforcement Learning
Ability to learn and make decisions in complex domains without

requiring large quantities of data
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Data-Efficient RL for Autonomous Robots
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1 Model-based RL
Data-efficient decision making

2 Model predictive RL
Speed up learning further by online planning

3 Meta learning using latent variables
Generalize knowledge to new situations
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Reinforcement Learning

Learn to solve a task
Trial-and-error interaction with the environment
Feedback via reward/cost function
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Reinforcement Learning and Optimal Control

xt`1 “ f p xt , ut q `w , ut “ π p xt , θ q

State Control Policy Policy parameters
Transition function

Objective (Controller Learning)
Find policy parameters θ˚ that minimize the expected long-term cost

Jpθq “
ÿT

t“1
Ercpxtq|θs , ppx0q “ N

`

µ0, Σ0

˘

.

Instantaneous cost cpxtq, e.g., }xt ´ xtarget}
2

Typical objective in optimal control and reinforcement learning
(Bertsekas, 2005; Sutton & Barto, 1998)
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Fast Reinforcement Learning

Objective
Minimize expected long-term cost Jpθq “

ř

tErcpxtq|θs

PILCO Framework: High-Level Steps
1 Probabilistic model for transition function f

System identification

2 Compute long-term predictions ppx1|θq, . . . , ppxT |θq

3 Policy improvement
4 Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Model Learning (System Identification)

Model learning problem: Find a function f : x ÞÑ fpxq “ y

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
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y

Observed function values
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More plausible models

Predictions? Decision Making? Model Errors!
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Model Learning (System Identification)

Model learning problem: Find a function f : x ÞÑ fpxq “ y
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Distribution over plausible functions

Express uncertainty about the underlying function to be
robust to model errors
Gaussian process for model learning
(Rasmussen & Williams, 2006)
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Introduction to Gaussian Processes

Flexible Bayesian regression method
Probability distribution over functions
Fully specified by

Mean function m (average function)
Covariance function k (assumptions on structure)

kpxp,xqq “ Covrfpxpq, fpxqqs

Posterior predictive distribution at x˚ is Gaussian
(Bayes’ theorem):

ppfpx˚q| x˚ , X,y q “ N
`

fpx˚q |mpx˚q, σ
2px˚q

˘

Test input Training data
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Intuitive Introduction to Gaussian Processes
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Prior belief about the function

Predictive (marginal) mean and variance:

Erfpx˚q|x˚,∅s “ mpx˚q “ 0

Vrfpx˚q|x˚,∅s “ σ2px˚q “ kpx˚,x˚q
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Fast Reinforcement Learning

Objective
Minimize expected long-term cost Jpθq “

ř

tErcpxtq|θs

PILCO Framework: High-Level Steps
1 Probabilistic model for transition function f

System identification
2 Compute long-term predictions ppx1|θq, . . . , ppxT |θq
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4 Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models January 7, 2020 13



Long-Term Predictions
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t=1

t=2

t=T

t=5

Iteratively compute ppx1|θq, . . . , ppxT |θq

ppxt`1|θq “

¡

ppxt`1|xt,utq
loooooooomoooooooon

GP prediction

ppxt,ut|θq
loooooomoooooon

N pµ,Σq

df dxt dut

GP moment matching
(Girard et al., 2002; Quiñonero-Candela et al., 2003)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Fast Reinforcement Learning

Objective
Minimize expected long-term cost Jpθq “

ř

tErcpxtq|θs

PILCO Framework: High-Level Steps
1 Probabilistic model for transition function f

System identification
2 Compute long-term predictions ppx1|θq, . . . , ppxT |θq

3 Policy improvement
Compute expected long-term cost Jpθq
Find parameters θ that minimize Jpθq

4 Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Policy Improvement

Objective
Minimize expected long-term cost Jpθq “

ř

tErcpxtq|θs

Know how to predict ppx1|θq, . . . , ppxT |θq

Compute

Ercpxtq|θs “

ż

cpxtqN
`

xt |µt, Σt

˘

dxt , t “ 1, . . . , T ,

and sum them up to obtain Jpθq
Analytically compute gradient dJpθq{dθ
Standard gradient-based optimizer (e.g., BFGS) to find θ˚

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Standard Benchmark: Cart-Pole Swing-up

Swing up and balance a freely swinging pendulum on a cart
No knowledge about nonlinear dynamics Learn from scratch
Cost function cpxq “ 1´ expp´}x´ xtarget}

2q

Unprecedented learning speed compared to state-of-the-art

Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models January 7, 2020 18
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Swing up and balance a freely swinging pendulum on a cart
No knowledge about nonlinear dynamics Learn from scratch
Cost function cpxq “ 1´ expp´}x´ xtarget}

2q

Unprecedented learning speed compared to state-of-the-art
Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
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Wide Applicability

with D Fox with P Englert, A Paraschos, J Peters with A Kupcsik, J Peters, G Neumann

B Bischoff (Bosch), ESANN 2013 A McHutchon (U Cambridge) B Bischoff (Bosch), ECML 2013

Application to a wide range of robotic systems
Deisenroth et al. (RSS, 2011): Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning
Englert et al. (ICRA, 2013): Model-based Imitation Learning by Probabilistic Trajectory Matching
Deisenroth et al. (ICRA, 2014): Multi-Task Policy Search for Robotics
Kupcsik et al. (AIJ, 2017): Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models January 7, 2020 19



Summary (1)

In robotics, data-efficient learning is critical
Probabilistic, model-based RL approach

Reduce model bias
Unprecedented learning speed
Wide applicability

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models January 7, 2020 20
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Safe Exploration

Deal with real-world safety constraints (states/controls)
Use probabilistic model to predict whether state constraints are
violated (e.g., Sui et al., 2015; Berkenkamp et al., 2017)
Adjust policy if necessary (during policy learning)

Safe exploration within an MPC-based RL setting
Optimize control signals ut directly (no policy parameters)
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Approach

Idea: Optimize control signals directly (instead of policy
parameters)
Few parameters to optimize Low-dimensional search space
Open-loop control

No chance of success (with minor model inaccuracies)

Model predictive control (MPC) turns this into a closed-loop
control approach
Use this within a trial-and-error RL setting
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Probabilistic MPC in RL

Learned GP model for transition dynamics
Repeat (while executing the policy):

1 In current state xt, determine optimal control sequence
u˚0 , . . . ,u

˚
H´1

2 Apply first control u˚0 in state xt

3 Transition to next state xt`1

4 Update GP transition model

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Theoretical Results

Uncertainty propagation is deterministic (GP moment
matching)

Re-formulate system dynamics:

zt`1 “ fMM pzt,utq

zt “ tµt,Σtu Collects moments

Deterministic system function that propagates moments
Lipschitz continuity (under mild assumptions) implies that we
can apply Pontryagin’s Minimum Principle

Control Hamiltonian Hpλt`1, zt,utq

Adjoint recursion for λt

Necessary optimality condition: BH{But “ 0

Principled treatment of constraints on controls
Use predictive uncertainty to check violation of state constraints

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Learning Speed (Cart Pole)
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Zero-Var: Only use the mean of the GP, discard variances for
long-term predictions
MPC: Increased data efficiency (40% less experience required
than PILCO)

MPC more robust to model inaccuracies than a parametrized
feedback controller

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Learning Speed (Double Pendulum)

0 2 4 6 8 10 12 14 16 18 20

Trial # (3 sec per trial)

0

10

20

30

40

50

60

70

80

90

100

S
u
c
c
e
s
s
 
%

PILCO
GP-MPC
Zero-Var

GP-MPC maintains the same improvement in data efficiency
Zero-Var fails:

Gets stuck in local optimum near start state
Insufficient exploration due to lack of uncertainty propagation

Although MPC is fairly robust to model inaccuracies we cannot
get away without uncertainty propagation

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Safety Constraints (Cart Pole)

u

Trial # (3 sec or less per trial)

S
u
c
c
e
s
s
 
%

PILCO
GP-MPC-Var
GP-MPC-Mean

PILCO 16/100 constraint violations
GP-MPC-Mean 21/100 constraint violations
GP-MPC-Var 3/100 constraint violations

Propagating model uncertainty important for safety

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Safety Constraints (Double Pendulum)

u1

u2 Trial # (3 sec or less per trial)

S
u
c
c
e
s
s
 
%

PILCO
GP-MPC-Var
GP-MPC-Mean

Experiment Double Pendulum
PILCO 23/100

GP-MPC-Mean 26/100
GP-MPC-Var 11/100

Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
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Summary (2)

u

Probabilistic prediction models for safe exploration
Uncertainty propagation can be used to reduce violation of
safety constraints
MPC framework increases robustness to model errors

Increased data efficiency

Marc Deisenroth (UCL) Data-Efficient Reinforcement Learning with Probabilistic Models January 7, 2020 30
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Meta Learning

Meta Learning
Generalize knowledge from known tasks to new (related) tasks

Different robot configurations (link lengths, weights, ...)
Re-use experience gathered so far generalize learning to new
dynamics that are similar

Accelerated learning
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Approach

Separate global and task-specific properties

Shared global parameters describe general dynamics

Describe task-specific (local) configurations with latent variable

Online variational inference of (unseen) configurations
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Meta Model Learning with Latent Variables

yt

8

fp¨q

xt

ut

hp

t “ 1, . . . , Tp

p “ 1, . . . , P
x

f
(x

)

Train pred.

Test pred.

True f(x)

Train data

Test data

yt “ f pxt,ut, hp q

GP captures global properties of the dynamics

Latent variable hp describes local configuration
Variational inference to find a posterior on latent

configuration
Fast online inference of new configurations (no model
re-training required)

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Latent Embeddings

Length

Mass

l = 0.4

l = 0.5

l = 0.6

l = 0.7

m = 0.4

m = 0.6

m = 0.7

m = 0.8

m = 0.9

Latent variable h encodes length l and mass m of the cart pole
6 training tasks, 14 held-out test tasks

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Meta-RL (Cart Pole): Training

Pre-trained on 6 training configurations until solved

Model Training (s) Description
Independent 16.1 ˘ 0.4 Independent GP-MPC
Aggregated 23.7 ˘ 1.4 Aggregated experience (no latents)
Meta learning 15.1 ˘ 0.5 Aggregated experience (with latents)

Meta learning can help speeding up RL

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Meta-RL (Cart Pole): Few-Shot Generalization

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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SGP-ML

Few-shot generalization on 4 unseen configurations
Success: solve all 10 (6 training + 4 test) tasks
Meta learning: blue
Independent (GP-MPC): orange
Aggregated experience model (no latents): green

Meta RL generalizes well to unseen tasks

Sæmundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Summary (2)

yt

8

fp¨q
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hp

t “ 1, . . . , Tp

p “ 1, . . . , P

Length

Mass

l = 0.4

l = 0.5

l = 0.6

l = 0.7

m = 0.4

m = 0.6

m = 0.7

m = 0.8

m = 0.9

Generalize knowledge from known situations to unseen ones
Few-shot learning

Latent variable can be used to infer task similarities
Significant speed-up in model learning and model-based RL
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Team and Collaborators
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l = 0.4

l = 0.5

l = 0.6

l = 0.7

m = 0.4

m = 0.6

m = 0.7

m = 0.8

m = 0.9

Data efficiency is a practical challenge for autonomous robots
Three pillars of data-efficient reinforcement learning for
autonomous robots

1 Model-based reinforcement learning with learned probabilistic
models for fast learning from scratch

2 Model predictive control with learned dynamics models
accelerate learning and allow for safe exploration

3 Meta learning using latent variables to generalize knowledge to
new situations

Key to success: Probabilistic modeling and Bayesian inference

Thank you for your attention
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Controller Parametrization

Controller:

π̃px,θq “
K
ÿ

k“1

wk exp
`

´ 1
2px´ µkq

JΛpx´ µkq
˘

u “ πpx,θq “ umaxσpπ̃px,θqq P r´umax, umaxs ,

where σ is a squashing function.

Parameters:

θ :“ twk,µk,Λu

Squashing function:

σpzq “
9

8
sinpzq `

1

8
sinp3zq
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Squashing Function
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Cost Functions

Quadratic cost cpxq “ px´ xtargetq
JW px´ xtargetq

Saturating cost cpxq “ 1´ exp
`

´px´xtargetq
JW px´xtargetq

˘

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

distance

c
o

s
t

 

 

quadratic

saturating

Quadratic cost pays a lot of attention to states “far away”
Bad idea for exploration
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Natural Exploration with the Saturating Cost

Task: Minimize Ercpxtqs

−1.5 −1 −0.5 0 0.5 1 1.5
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cost function

peaked state distribution
wide state distribution
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cost function

peaked state distribution
wide state distribution

In the early stages of learning, state predictions are expected to
be far away from the target

Exploration favored
In the final stages of learning, state predictions are expected to
be close to the target Exploitation favored

Bayesian treatment: Natural exploration/exploitation trade-off
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GP Moment Matching: Some Details

f „ GP p0, kq , Training data: X,y

x˚ „ N
`

µ, Σ
˘

Compute Erfpx˚qs

Ef,x˚
rfpx˚qs “ Ex

“

Ef rfpx˚q|x˚s
‰

“ Ex˚rmf px˚q s

“ Ex˚

“

kpx˚,XqpK ` σ2nIq
´1y

‰

“ βJ
ż

kpX,x˚qN
`

x˚ |µ, Σ
˘

dx˚

β :“ pK ` σ2nIq
´1y independent of x˚

If k is a Gaussian (squared exponential) kernel, this integral can
be solved analytically
Variance of fpx˚q can be computed similarly
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Meta Learning Model

yt

8

fp¨q

xt

ut

hp

t “ 1, . . . , Tp

p “ 1, . . . , P

fp¨q „ GP

ppHq “
ź

p

pphpq , pphpq “ N
`

0, I
˘

ppY ,H,fp¨q|X,Uq “
źP

p“1
pphpq

źTp

t“1
ppyt|xt,ut,hp,fp¨qqppfp¨qq

yt “ xt`1 ´ xt
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Variational Inference in Meta Learning Model

yt

8

fp¨q

xt

ut

hp

t “ 1, . . . , Tp

p “ 1, . . . , P

Mean-field variational family:

qpfp¨q,Hq “ qpfp¨qqqpHq

qpHq “
źP

p“1
N php|np,T pq ,

qpfp¨qq “

ż

ppfp¨q|fZqqpfZqdfZ SV-GP (Titsias, 2009)
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Evidence Lower Bound

ELBO “ Eqpfp¨q,Hq

”

log
ppY ,H,fp¨q|X,Uq

qpfp¨q,Hq

ı

“
ÿP

p“1

ÿTp

t“1
Eqpf t|xt,ut,hpqqphpq

“

log ppyt|f tq
‰

´KLpqpHq||ppHqq ´ KLpqpfp¨qq||ppfp¨qqq

“
ÿP

p“1

ÿTp

t“1

Monte Carlo estimate
hkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj

Eqpf t|xt,ut,hpqqphpq

“

log ppyt|f tq
‰

´KLpqpHq||ppHqq ´ KLpqpF Zq||ppF Zqq
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

closed-form solution

yt

8

fp¨q

xt

ut

hp

t “ 1, . . . , Tp

p “ 1, . . . , P
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