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Autonomous Robots: Key Challenges s

m Three key challenges in autonomous systems:

Modeling. Predicting. Decision making.

m No human in the loop M “Learn” from data
m Automatically extract information

m Data-efficient (fast) learning

m Uncertainty: sensor noise, unknown processes,
limited knowledge, ...

Robotics

» Reinforcement learning
subject to data efficiency
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Data-efficient Reinforcement Learning
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Reinforcement Learning A
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Reinforcement Learning s
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State Control Policy Policy parameters
Transition function

Objective (Controller Learning)

Find policy parameters 6* that minimize the expected long-term cost

J0) =" Ele(@)6],  plwo) =N (. D).

t=1

Instantaneous cost ¢(x;), e.g., |z — wtargetHQ

» Typical objective in optimal control and reinforcement learning
(Bertsekas, 2005; Sutton & Barto, 1998)
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Fast Reinforcement Learning .

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]
PILCO Framework: High-Level Steps

Probabilistic model for transition function f
» System identification

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Fast Reinforcement Learning .

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]

PILCO Framework: High-Level Steps

Probabilistic model for transition function f
» System identification
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Model Learning (System Identification) s

Model learning problem: Find a function f : x — f(z) =y
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Model Learning (System Identification) s

Model learning problem: Find a function f : x — f(z) =y
3,
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Plausible model
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Model Learning (System Identification) s
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Predictions? Decision Making?
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Model Learning (System Identification) s
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Predictions? Decision Making? Model Errors!
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Model Learning (System Identification) s

Model learning problem: Find a function f : x — f(z) =y
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Model Learning (System Identification) s

Model learning problem: Find a function f : x — f(z) =y
3,

54 32-1 012345678
X
Distribution over plausible functions

» Express uncertainty about the underlying function to be
robust to model errors

» Gaussian process for model learning
(Rasmussen & Williams, 2006)
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Fast Reinforcement Learning .

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]

PILCO Framework: High-Level Steps

Probabilistic model for transition function f
» System identification
Compute long-term predictions p(x1|0),...,p(x7|0)

Policy improvement

Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Long-Term Predictions

m Iteratively compute p(x1|6), ..., p(xr|0)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Long-Term Predictions
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m Iteratively compute p(x1|6), ..., p(xr|0)
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GP prediction N(p,X)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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m Iteratively compute p(x1|6), ..., p(xr|0)
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GP prediction N(p,X)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Long-Term Predictions
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m Iteratively compute p(x1|6), ..., p(xr|0)

D - [ ) ) 0

GP prediction N(p,X)
» GP moment matching

(Girard et al., 2002; Quifionero-Candela et al., 2003)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Fast Reinforcement Learning .

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]

PILCO Framework: High-Level Steps
Probabilistic model for transition function f
» System identification
Compute long-term predictions p(x;|0),...,p(x7|0)
Policy improvement

m Compute expected long-term cost J(6)
m Find parameters 0 that minimize .J(6)

Apply controller

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Policy Improvement

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]
m Know how to predict p(x119), ..., p(x7|0)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Policy Improvement "

Objective
Minimize expected long-term cost J(0) = >, E[c(x;)|6]

m Know how to predict p(x119), ..., p(x7|0)
m Compute

E[c(x¢)|0] = Jc(wt)/\f(a:t |y, B)dae, t=1,...,T,

and sum them up to obtain J(6)

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Policy Improvement "

Objective

Minimize expected long-term cost J(0) = >, E[c(x;)|6]
m Know how to predict p(x119), ..., p(x7|0)
m Compute

E[c(x¢)|0] = Jc(wt)/\f(a:t |y, B)dae, t=1,...,T,

and sum them up to obtain J(6)
m Analytically compute gradient d.J(6)/d0
m Standard gradient-based optimizer (e.g., BFGS) to find 6*

Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control
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Fast Reinforcement Learning .

Objective
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Standard Benchmark: Cart-Pole Swing-up A

m Swing up and balance a freely swinging pendulum on a cart
m No knowledge about nonlinear dynamics » Learn from scratch

m Cost function ¢(x) = 1 — exp(—|z — wtargetHz)

m Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
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https://github.com/ICL-SML/pilco-matlab

Standard Benchmark: Cart-Pole Swing-up

C: Coulom 2002
KK: Kimura & Kobayashi 1999
D: Doya 2000
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m Swing up and balance a freely swinging pendulum on a cart
m No knowledge about nonlinear dynamics M Learn from scratch

m Cost function ¢(x) = 1 — exp(—|z — cctargetHz)

m Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
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https://github.com/ICL-SML/pilco-matlab

Standard Benchmark: Cart-Pole Swing-up

C: Coulom 2002
KK: Kimura & Kobayashi 1999
D: Doya 2000

RT: Raiko & Tornio 2009
pilco: Deisenroth & Rasmussen 2011

RT

Swing up and balance a freely swinging pendulum on a cart

No knowledge about nonlinear dynamics » Learn from scratch

[

[

m Cost function c(z) = 1 — exp(—|& — Trarget|?)

m Unprecedented learning speed compared to state-of-the-art
[

Code: https://github.com/ICL-SML/pilco-matlab

Deisenroth & Rasmussen (ICML, 2011): PILCO: A Model-based and Data-efficient Approach to Policy Search
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https://github.com/ICL-SML/pilco-matlab

Wide Applicability

-
with D Fox with P Englert, A Paraschos, ] Peters with A Kupcsik, | Peters, G Neumann

B Bischoff (Bosch), ESANN 2013 A McHutchon (U Cambridge)
» Application to a wide range of robotic systems

Deisenroth et al. (RSS, 2011): Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning
Englert et al. (ICRA, 2013): Model-based Imitation Learning by Probabilistic Trajectory Matching

Deisenroth et al. (ICRA, 2014): Multi-Task Policy Search for Robotics

Kupcsik et al. (AIJ, 2017): Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills
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Summary (1) N

m In robotics, data-efficient learning is critical
m Probabilistic, model-based RL approach

m Reduce model bias
m Unprecedented learning speed
m Wide applicability
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Data-efficient Reinforcement Learning

Meta Learning
Knowledge

Steind6r Seemundsson  Katja Hofmann
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Meta Learning A

YT

Meta Learning

Generalize knowledge from known tasks to new (related) tasks
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Meta Learning 8

SCET

Meta Learning

Generalize knowledge from known tasks to new (related) tasks

m Different robot configurations (link lengths, weights, ...)

m Re-use experience gathered so far generalize learning to new
dynamics that are similar
» Accelerated learning

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 17



Approach s

$SCET

m Separate global and task-specific properties

m Shared global parameters describe general dynamics

m Describe task-specific (local) configurations with latent variable
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Approach s

$SCET

m Separate global and task-specific properties

m Shared global parameters describe general dynamics

m Describe task-specific (local) configurations with latent variable
m Online variational inference of (unseen) configurations
m Few-shot model-based RL
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Meta Model Learning with Latent Variables

SSAV A

Y = f (mtaub hP)

Seemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019
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Meta Model Learning with Latent Variables

o~

flz)

@ Train data

SSAV A

I

Y = f (mtaub hP)

m GP captures global properties of the dynamics

Seemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Meta Model Learning with Latent Variables

\\/ —— Train pred.
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Y = f (mtaub hP)
m GP captures global properties of the dynamics

m Latent variable h, describes local configuration

M Variational inference to find a posterior on latent
configuration

Seemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Meta Model Learning with Latent Variables

flz)
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Test pred
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Y = f (mhut? hP)

m GP captures global properties of the dynamics

m Latent variable h, describes local configuration
M Variational inference to find a posterior on latent
configuration

m Fast online inference of new configurations (no model
re-training required)
Seemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019
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Latent Embeddings .
%

O =04

QO 1=05

O =06

=07
m = 0.4
o ° m = 0.6
m = 0.7

Length m = 0.8
m = 0.9

m Latent variable h encodes length [ and mass m of the cart pole
m 6 training tasks, 14 held-out test tasks

Seemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes
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Meta-RL (Cart Pole): Training N

m Pre-trained on 6 training configurations until solved

Model Training (s) Description
16.1 £ 0.4
Aggregated 237 +£14  Aggregated experience (no latents)
Meta learning 15.1 + 0.5  Aggregated experience (with latents)

» Meta learning can help speeding up RL

Seemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 21



Meta-RL (Cart Pole): Few-Shot Generalization ,

100
80
60

10

Success Rate (%)

—J— mLGpP
SGP-1
N —F— sGP-ML

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Trials

m Few-shot generalization on 4 unseen configurations
m Success: solve all 10 (6 training + 4 test) tasks
m Meta learning: blue

m Aggregated experience model (no latents): green

» Meta RL generalizes well to unseen tasks

Seemundsson et al. (UAI, 2018): Meta Reinforcement Learning with Latent Variable Gaussian Processes

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019
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Summary (2)

m Generalize knowledge from known situations to unseen ones
» Few-shot learning

m Latent variable can be used to infer task similarities

m Significant speed-up in model learning and model-based RL

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 23
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Data-efficient Reinforcement Learning

Structural Prior

Meta Learning

Knowledge

e

Steind6r Seemundsson  Alexander Terenin Katja Hofmann

Reinforcement Learning from Scarce Data

November 25, 2019
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Structural Priors ﬁ,

Structural Priors

High-level prior knowledge: e.g., laws of physics or configuration
constraints

Equations of motion

— d(oL) _ 9L
“—dt(aq) dq

» Improve data efficiency and generalization

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 25



Variational Integrator Networks s

Variational Integrator Networks (VINs)
Network architectures with built-in physics and geometric structure
Outline:

m How we talk about physics

m How we think about neural networks

m How to encode physics and geometry into architecture

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 26



Physics: Lagrangian/Hamiltonian Mechanics .

Equations of motion

_ d (oL oL
“—a(a—q)—a—q

m General framework:
classical mechanics, quantum mechanics, relativity

m Global properties:
conservation laws, configuration manifold, etc.

m Solve differential equations

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 27



Physics: Key Objects

m Configuration space:

qge @

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 28



Physics: Key Objects s

m Configuration space:
qeQ
m Lagrangian (specifies physics):

L(q(t),q(t)) = K — U = kinetic energy — potential energy
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Physics: Key Objects s

m Configuration space:
qeQ
m Lagrangian (specifies physics):
L(q(t),q(t)) = K — U = kinetic energy — potential energy

m Action (maps trajectories to real numbers)

b
A= [ L. )ar

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 28



Physics: Hamilton’s Principle "

Hamilton’s Principle

Physical paths are stationary points of the action.

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 29



Physics: Hamilton’s Principle "

Hamilton’s Principle

Physical paths are stationary points of the action.
Equations of motion (Euler-Lagrange equation):
d (0L oL
“(=)-==0
dt ( oq ) 0q
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Physics: Hamilton’s Principle "

Hamilton’s Principle

Physical paths are stationary points of the action.
Equations of motion (Euler-Lagrange equation):
d (0L oL
“(=)-==0
dt ( oq ) 0q

The solution ¢(t) evolves according to the laws of physics.

0A=0

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 29



Physics: Recap P

m Lagrangian — Specifies the physics
m Hamilton’s principle — Equations of motion
m Solution — Physical path

0A=0
—

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 30



Neural ODE Perspective .

m Residual networks = Learnable approximate ODE solvers

o(t) = f(x(t),t,0) <« @1 =m0+ f(2(t),0)

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 31



Neural ODE Perspective .

m Residual networks = Learnable approximate ODE solvers
w(t) = f(w(t)>ta 0) —  Typ1 = Tyt f(x(t)7 9)

m Intuition: Physical networks = Learnable approximations to
equations of motion

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 31



Neural ODE Perspective .

m Residual networks = Learnable approximate ODE solvers
w(t) = f(w(t)>ta 0) —  Typ1 = Tyt f(w(t)7 9)

m Intuition: Physical networks = Learnable approximations to
equations of motion

m Problem: Euler discretization leads to significant errors and
physically implausible behavior

e Euler

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 31



Variational Integrators s

Variational Integrators

Geometric integrators that preserve global (physical) properties

e Euler

. Variational
Integrator

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 32



Variational Integrators s

Variational Integrators

Geometric integrators that preserve global (physical) properties

e Euler

. Variational
Integrator

Properties:
m Symplectic (volume preserving)
m Momentum preserving
m Bounded energy behavior

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 32



Recipe for Variational Integrator Network

Write down parameterized Lagrangian:

Lo(q(t), 4(t))

Seemundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings
Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 33



Recipe for Variational Integrator Network "

Write down parameterized Lagrangian:
Lo(q(t),4(1))
Derive explicit variational integrator:

Lagrangian: qi+1 = fo(qt, q1—1)
Hamiltonian: [q¢41, Giv1] = folae, Gt)

Seemundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings
Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 33



Recipe for Variational Integrator Network "

Write down parameterized Lagrangian:

Lo(q(t), 4(t))

Derive explicit variational integrator:

Lagrangian: qi+1 = fo(qt, q1—1)
Hamiltonian: [q¢41, Giv1] = folae, Gt)

fo defines the network architecture
/./})\‘/...\/—fﬁ\/-...\ ‘ f(;

(1,>4<:>’13— —>f1,>4<:>!1, — —>ql-n><:'(1;.
ql—>qJZ ><q—>q'>< Z<,q q,

Z T TN N7

Seemundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 33



VIN Examples s

Newtonian Potential System:
Lo(q(t), (1)) = Ko(4(1)) — Ua(q(t))

m Newtonian network on R?

Q1 = 2qt — q1—1 — h* fo(qr)

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 34



VIN Examples s

Newtonian Potential System:
Lo(q(t), q(t)) = Ko(4(t)) — Up(q(t))
m Newtonian network on R”
Q1 = 2qt — -1 — h* fo(qr)
m Newtonian network on SO(2)

sin Agy = sin Ag;_1 + h%r9(q)
Giv1 = qr + Agq

» Allows us to define dynamics on a manifold

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019 34



Learning from Noisy Data: Pendulum

RMSE
RMSE

Predictions
P
)
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]
Predictions
P
)
1
o
ol
o
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el
o
S

|
~N
1
S
o
Energy
Energy

q Time step q Time step

= Ground truth

Pendulum System. Left: 150 observations; Right: 750 observations.

Seemundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019
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Learning from Noisy Data: Pendulum

i L s
4 >y 4 4
= =
2 24 « 2 2 «
S 0 o 0
o T T T g T T T
5% 01 05 10 15 5% 04 0 5 10 15 20
g F 12,5 &’
—2 1 100 & 27 125 &
2 2
ol F75 § -4 10.0 &
T T T T T T T T T T T T
-1 0 1 0 5 10 15 20 -2 0 20 5 10 15 20
q Time step q Time step
== Ground truth ~—— Baseline NN

Pendulum System. Left: 150 observations; Right: 750 observations.

m Baseline neural network: Dissipates/adds energy for low and
moderate data

Seemundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings

Marc Deisenroth (UCL) Reinforcement Learning from Scarce Data November 25, 2019
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Learning from Noisy Data: Pendulum

4 - s
4 >y 4 4
= =
2 2 « 2 5, 3
§ 0 £ — 0
3 0 0 5 10 15 20 2 0 0 5 10 15 20
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Pendulum System. Left: 150 observations; Right: 750 observations.

m Baseline neural network: Dissipates/adds energy for low and

moderate data
m Hamiltonian neural network (Greydanus et al., 2019): Overfits

in low-data regime
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Learning from Noisy Data: Pendulum
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== Ground truth ~—— Baseline NN —— HNN —— VIN

Pendulum System. Left: 150 observations; Right: 750 observations.

m Baseline neural network: Dissipates/adds energy for low and
moderate data

m Hamiltonian neural network (Greydanus et al., 2019): Overfits
in low-data regime

m Variational integrator network: Conserves energy and
generalizes better in both regimes

Seemundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings
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Learning from Pixel Data s
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m VIN within variational auto-encoder (VAE) setup:
m Learn physical system in lower-dimensional latent space
m Use VIN for long-term forecasting
» Exploit geometry of the problem for system identification and
forecasting
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Learning from Pixel Data: Forecasting

Residual (Euler) Network

m Observations: 28 x 28 pixel images of pendulum

m Training data: 40 images

Seemundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings
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Learning from Pixel Data: Forecasting

Residual (Euler) Network

m Observations: 28 x 28 pixel images of pendulum
m Training data: 40 images

m Dynamic VAE: Forecasting is not meaningful
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Learning from Pixel Data: Forecasting

Variational Integrator Network

m Observations: 28 x 28 pixel images of pendulum
m Training data: 40 images
m Dynamic VAE: Forecasting is not meaningful

m Physically meaningful long-term forecasts in latent
and observation space

Seemundsson et al. (arXiv:1910.09349): Variational Integrator Networks for Physically Meaningful Embeddings
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Learning from Pixel Data: Latent Embeddings .
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Summary (3) N

DVAE

e

DLG-VAE
|

m Variational integrator networks to encode physics and
geometric structure P Interpretability

m Data-efficient learning and physically meaningful long-term
forecasts
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Team and Collaborators .
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— DLG-VAE

Data-efficient Reinforcement Learning

Model-based AL

Meta Leaming

m Data efficiency is a practical challenge for autonomous robots
m Three pillars of data-efficient machine learning
Model-based reinforcement learning with learned probabilistic
models for fast learning from scratch
Meta learning using latent variables to generalize knowledge to
new situations
Incorporation of structural priors for learning physically
meaningful predictive models
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— DLG-VAE

Data-efficient Reinforcement Learning

i
A\

Model-based AL

2

m Data efficiency is a practical challenge for autonomous robots

m Three pillars of data-efficient machine learning
Model-based reinforcement learning with learned probabilistic
models for fast learning from scratch
Meta learning using latent variables to generalize knowledge to
new situations
Incorporation of structural priors for learning physically
meaningful predictive models
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GP Moment Matching: Some Details "

f~GP(0,k), Training data: X,y
Ty ~ N(p, )

m Compute E[f(z+)]
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GP Moment Matching: Some Details "

f~GP(0,k), Training data: X,y
Ty ~ N(p, )

m Compute E[f(z.)]

Efa, [f(@4)] = Bo| Bf[f(2s)|z4] | = Ea,[my () ]
=Eg, [ k(zs, X)(K + 021) 'y ]

~ 67 [HX. 2N (2. | . B)d.

B:= (K +0¢2I)"'y »independent of x,
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GP Moment Matching: Some Details "

f~GP(0,k), Training data: X,y
Ty ~ N(p, )

m Compute E[f(z+)]
B o, [f(2:)] = Ba| By [f (@) @4] | = B [my(24) ]
=Eg, [ k(zs, X)(K + 021) 'y ]
=p" fk:(X,a:*)N(w* | p, B)dz,
B:= (K +0¢2I)"'y »independent of x,

m If £ is a Gaussian (squared exponential) kernel, this integral can
be solved analytically
m Variance of f(x,) can be computed similarly
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