Tackling the Data-Efficiency Challenge in Autonomous Robots Using Probabilistic Modeling Marc Deisenroth Centre for Artificial Intelligence Department of Computer Science University College London m.deisenroth@ucl.ac.uk https://deisenroth.cc International Workshop on Machine Learning and Artificial Intelligence, Télécom ParisTech October 8, 2019 #### **Autonomous Robots** ■ Vision: Autonomous robots support humans in everyday activities ➤ Fast learning and automatic adaptation #### **Autonomous Robots** - Vision: Autonomous robots support humans in everyday activities ▶ Fast learning and automatic adaptation - Currently: Data-hungry learning or human guidance ### **Autonomous Robots** - Vision: Autonomous robots support humans in everyday activities ➤ Fast learning and automatic adaptation - Currently: Data-hungry learning or human guidance Fully autonomous learning and decision making with little data in real-life situations ### Central Problem ### **Data-Efficient Reinforcement Learning** Ability to learn and make decisions in complex domains without requiring large quantities of data #### Data-Efficient RL for Autonomous Robots - 1 Model-based RL - ▶ Data-efficient decision making - 2 Model predictive RL - ▶ Speed up learning further by online planning - 3 Meta learning - **▶** Generalization of knowledge to new situations # Reinforcement Learning ## Reinforcement Learning ### Objective (Controller Learning) Find policy parameters θ^* that minimize the expected long-term cost $$J(\boldsymbol{\theta}) = \sum_{t=1}^{T} \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}], \qquad p(\boldsymbol{x}_0) = \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0).$$ Instantaneous cost $c(x_t)$, e.g., $||x_t - x_{\text{target}}||^2$ ➤ Typical objective in optimal control and reinforcement learning (Bertsekas, 2005; Sutton & Barto, 1998) ### Objective Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$ - \blacksquare Probabilistic model for transition function f - **▶** System identification ### Objective Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$ - **1** Probabilistic model for transition function f - ▶ System identification - 2 Compute long-term predictions $p(x_1|\theta), \dots, p(x_T|\theta)$ ### Objective Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$ - **1** Probabilistic model for transition function f - **▶** System identification - **2** Compute long-term predictions $p(x_1|\theta), \dots, p(x_T|\theta)$ - 3 Policy improvement ### Objective Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$ - **1** Probabilistic model for transition function f - **▶** System identification - **2** Compute long-term predictions $p(x_1|\theta), \dots, p(x_T|\theta)$ - 3 Policy improvement - 4 Apply controller ### Objective Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$ - **1** Probabilistic model for transition function f - >> System identification - **2** Compute long-term predictions $p(x_1|\theta), \dots, p(x_T|\theta)$ - 3 Policy improvement - 4 Apply controller Model learning problem: Find a function $f: x \mapsto f(x) = y$ Observed function values Model learning problem: Find a function $f: x \mapsto f(x) = y$ Plausible model Model learning problem: Find a function $f: x \mapsto f(x) = y$ Plausible model **Predictions? Decision Making?** Model learning problem: Find a function $f: x \mapsto f(x) = y$ More plausible models **Predictions? Decision Making? Model Errors!** Model learning problem: Find a function $f: x \mapsto f(x) = y$ Distribution over plausible functions Model learning problem: Find a function $f: x \mapsto f(x) = y$ Distribution over plausible functions - ➤ Express uncertainty about the underlying function to be robust to model errors - ➤ Gaussian process for model learning (Rasmussen & Williams, 2006) ### Objective Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$ - **1** Probabilistic model for transition function f - → System identification - **2** Compute long-term predictions $p(x_1|\theta), \dots, p(x_T|\theta)$ - 3 Policy improvement - 4 Apply controller ■ Iteratively compute $p(x_1|\theta), \dots, p(x_T|\theta)$ ■ Iteratively compute $p(x_1|\theta), \dots, p(x_T|\theta)$ $$\underbrace{p(\boldsymbol{x}_{t+1}|\boldsymbol{x}_t,\boldsymbol{u}_t)}_{\text{GP prediction}}\underbrace{p(\boldsymbol{x}_t,\boldsymbol{u}_t|\boldsymbol{\theta})}_{\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})}$$ ■ Iteratively compute $p(x_1|\theta), \dots, p(x_T|\theta)$ $$p(\boldsymbol{x}_{t+1}|\boldsymbol{\theta}) = \iiint \underbrace{p(\boldsymbol{x}_{t+1}|\boldsymbol{x}_t, \boldsymbol{u}_t)}_{\text{GP prediction}} \underbrace{p(\boldsymbol{x}_t, \boldsymbol{u}_t|\boldsymbol{\theta})}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} df \ d\boldsymbol{x}_t \ d\boldsymbol{u}_t$$ Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control ■ Iteratively compute $p(x_1|\theta), \dots, p(x_T|\theta)$ $$p(\boldsymbol{x}_{t+1}|\boldsymbol{\theta}) = \iiint \underbrace{p(\boldsymbol{x}_{t+1}|\boldsymbol{x}_t, \boldsymbol{u}_t)}_{\text{GP prediction}} \underbrace{p(\boldsymbol{x}_t, \boldsymbol{u}_t|\boldsymbol{\theta})}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} df \ d\boldsymbol{x}_t \ d\boldsymbol{u}_t$$ → GP moment matching (Girard et al., 2002; Quiñonero-Candela et al., 2003) Deisenroth et al. (IEEE-TPAMI, 2015): Gaussian Processes for Data-Efficient Learning in Robotics and Control ### Objective Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$ - **1** Probabilistic model for transition function f - **▶** System identification - **2** Compute long-term predictions $p(x_1|\theta), \dots, p(x_T|\theta)$ - 3 Policy improvement - Compute expected long-term cost $J(\theta)$ - Find parameters θ that minimize $J(\theta)$ - 4 Apply controller ## Policy Improvement ### Objective Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$ ■ Know how to predict $p(x_1|\theta), \dots, p(x_T|\theta)$ ### Objective Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$ - Know how to predict $p(x_1|\theta), \dots, p(x_T|\theta)$ - Compute $$\mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}] = \int c(\boldsymbol{x}_t) \mathcal{N}(\boldsymbol{x}_t | \boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t) d\boldsymbol{x}_t, \quad t = 1, \dots, T,$$ and sum them up to obtain $J(\theta)$ ### Objective Minimize expected long-term cost $J(\boldsymbol{\theta}) = \sum_t \mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}]$ - Know how to predict $p(x_1|\theta), \dots, p(x_T|\theta)$ - Compute $$\mathbb{E}[c(\boldsymbol{x}_t)|\boldsymbol{\theta}] = \int c(\boldsymbol{x}_t) \mathcal{N}(\boldsymbol{x}_t | \boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t) d\boldsymbol{x}_t, \quad t = 1, \dots, T,$$ and sum them up to obtain $J(\theta)$ - Analytically compute gradient $dJ(\theta)/d\theta$ - Standard gradient-based optimizer (e.g., BFGS) to find θ^* ### Objective Minimize expected long-term cost $J(\theta) = \sum_t \mathbb{E}[c(x_t)|\theta]$ - **1** Probabilistic model for transition function f - **▶** System identification - **2** Compute long-term predictions $p(x_1|\theta), \dots, p(x_T|\theta)$ - 3 Policy improvement - 4 Apply controller # Standard Benchmark: Cart-Pole Swing-up - Swing up and balance a freely swinging pendulum on a cart - No knowledge about nonlinear dynamics ➤ Learn from scratch - Cost function $c(x) = 1 \exp(-\|x x_{\text{target}}\|^2)$ - Code: https://github.com/ICL-SML/pilco-matlab ## Standard Benchmark: Cart-Pole Swing-up - Swing up and balance a freely swinging pendulum on a cart - No knowledge about nonlinear dynamics ➤ Learn from scratch - Cost function $c(\boldsymbol{x}) = 1 \exp(-\|\boldsymbol{x} \boldsymbol{x}_{\text{target}}\|^2)$ - Code: https://github.com/ICL-SML/pilco-matlab ### Standard Benchmark: Cart-Pole Swing-up - Swing up and balance a freely swinging pendulum on a cart - No knowledge about nonlinear dynamics ➤ Learn from scratch - Cost function $c(\boldsymbol{x}) = 1 \exp(-\|\boldsymbol{x} \boldsymbol{x}_{\text{target}}\|^2)$ - Unprecedented learning speed compared to state-of-the-art - Code: https://github.com/ICL-SML/pilco-matlab # Wide Applicability with D Fox with P Englert, A Paraschos, J Peters with A Kupcsik, J Peters, G Neumann B Bischoff (Bosch), ESANN 2013 A McHutchon (U Cambridge) ### ➤ Application to a wide range of robotic systems Deisenroth et al. (RSS, 2011): Learning to Control a Low-Cost Manipulator using Data-efficient Reinforcement Learning Englert et al. (ICRA, 2013): Model-based Imitation Learning by Probabilistic Trajectory Matching Deisenroth et al. (ICRA, 2014): Multi-Task Policy Search for Robotics Kupcsik et al. (AIJ, 2017): Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills # Summary (1) - In robotics, data-efficient learning is critical - Probabilistic, model-based RL approach - Reduce model bias - Unprecedented learning speed - Wide applicability ### Safe Exploration - Deal with real-world safety constraints - Use probabilistic model to predict whether constraints are violated (e.g., Sui et al., 2015; Berkenkamp et al., 2017) - Adjust policy if necessary (during policy learning) ### Safe Exploration - Deal with real-world safety constraints - Use probabilistic model to predict whether constraints are violated (e.g., Sui et al., 2015; Berkenkamp et al., 2017) - Adjust policy if necessary (during policy learning) - ➤ Safe exploration within an MPC-based RL setting - \blacktriangleright Optimize control signals u_t directly (no policy parameters) - Idea: Optimize control signals directly (instead of policy parameters) - Few parameters to optimize ▶ Low-dimensional search space - Open-loop control - **▶** No chance of success (with minor model inaccuracies) - Idea: Optimize control signals directly (instead of policy parameters) - Few parameters to optimize ▶ Low-dimensional search space - Open-loop control - No chance of success (with minor model inaccuracies) - Model Predictive Control (MPC) turns this into a closed-loop control approach - Idea: Optimize control signals directly (instead of policy parameters) - Few parameters to optimize ▶ Low-dimensional search space - Open-loop control - No chance of success (with minor model inaccuracies) - Model Predictive Control (MPC) turns this into a closed-loop control approach - Positive side-effect: Increase robustness to model errors (online approach) - ▶ Increase data efficiency ### Probabilistic MPC in RL - GP model for transition dynamics - Repeat (while executing the policy): - In current state x_t , determine optimal control sequence u_1^*, \dots, u_H^* - 2 Apply first control u_1^* in state x_t - 3 Transition to next state x_{t+1} - 4 Update GP transition model #### Theoretical Results - Uncertainty propagation is deterministic (GP moment matching) - **▶** Re-formulate system dynamics: $$m{z}_t := \{m{\mu}_t, m{\Sigma}_t\} \implies ext{Collects moments}$$ $m{z}_{t+1} = f_{MM}(m{z}_t, m{u}_t)$ ### Theoretical Results - Uncertainty propagation is deterministic (GP moment matching) - **▶** Re-formulate system dynamics: $$oldsymbol{z}_t := \{oldsymbol{\mu}_t, oldsymbol{\Sigma}_t\} \implies ext{Collects moments}$$ $oldsymbol{z}_{t+1} = f_{MM}(oldsymbol{z}_t, oldsymbol{u}_t)$ - Deterministic system function that propagates moments - Lipschitz continuity (under mild assumptions) implies that we can apply Pontryagin's Minimum Principle - ▶ Principled treatment of control constraints ### Theoretical Results - Uncertainty propagation is deterministic (GP moment matching) - **▶** Re-formulate system dynamics: $$oldsymbol{z}_t := \{oldsymbol{\mu}_t, oldsymbol{\Sigma}_t\} \implies ext{Collects moments}$$ $oldsymbol{z}_{t+1} = f_{MM}(oldsymbol{z}_t, oldsymbol{u}_t)$ - Deterministic system function that propagates moments - Lipschitz continuity (under mild assumptions) implies that we can apply Pontryagin's Minimum Principle - ▶ Principled treatment of control constraints - Use predictive uncertainty to check whether state constraints are violated # Experimental Results: Learning Speed - Zero-Var: Only use the mean of the GP, discard variances for long-term predictions - MPC: Increased data efficiency (40% less experience required than PILCO) - ▶ MPC is more robust to model inaccuracies than a parametrized feedback controller ### **Experimental Results: Safety Constraints** ### **▶** Propagating model uncertainty important for safety Kamthe & Deisenroth (AISTATS, 2018): Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control # Summary (2) - Probabilistic prediction models for safe exploration - Uncertainty propagation can be used to reduce violation of safety constraints - MPC framework increases robustness to model errors Increased data efficiency ### Meta Learning ### Meta Learning Generalize knowledge from known tasks to new (related) tasks - Different robot configurations (link lengths, weights, ...) - Re-use experience gathered so far generalize learning to new dynamics that are similar - ▶ Accelerated learning # Approach - Separate global and task-specific properties - Shared global parameters describe general dynamics - Describe task-specific (local) configurations with latent variable # Approach - Separate global and task-specific properties - Shared global parameters describe general dynamics - Describe task-specific (local) configurations with latent variable - Online variational inference of (unseen) configurations - Few-shot model-based RL ### Meta Model Learning with Latent Variables $$oldsymbol{y}_t = oldsymbol{f}(oldsymbol{x}_t, oldsymbol{u}_t, oldsymbol{h}_p)$$ - GP captures global properties of the dynamics - Latent variable h_p describes local configuration Variational inference to find a posterior on latent configuration - Fast online inference of new configurations (no model re-training required) ### Latent Embeddings - Latent variable h encodes length l and mass m of the cart pole - 6 training tasks, 14 held-out test tasks # Meta-RL (Cart Pole): Training ■ Pre-trained on 6 training configurations until solved | Model | Training (s) | Description | |---------------|----------------------------------|--------------------------------------| | Independent | 16.1 ± 0.4 | Independent GP-MPC | | Aggregated | 23.7 ± 1.4 | Aggregated experience (no latents) | | Meta learning | $\textbf{15.1} \pm \textbf{0.5}$ | Aggregated experience (with latents) | **▶** Meta learning can help speeding up RL # Meta-RL (Cart Pole): Few-Shot Generalization - Few-shot generalization on 4 unseen configurations - Success: solve all 10 (6 training + 4 test) tasks - Meta learning: blue - Independent (GP-MPC): orange - Aggregated experience model (no latents): green ### **▶** Meta RL generalizes well to unseen tasks - Generalize knowledge from known situations to unseen ones▶ Few-shot learning - Latent variable can be used to describe how related tasks are - Significant speed-up in model learning and model-based RL - **Data efficiency** is a practical challenge for autonomous robots - Three pillars of data-efficient reinforcement learning - Probabilistic model-based RL for fast learning of models and controllers - 2 Model predictive control with learned dynamics models accelerate learning and allow for safe exploration - 3 Meta learning using latent variables to generalize knowledge to new situations - Data efficiency is a practical challenge for autonomous robots - Three pillars of data-efficient reinforcement learning - Probabilistic model-based RL for fast learning of models and controllers - 2 Model predictive control with learned dynamics models accelerate learning and allow for safe exploration - 3 Meta learning using latent variables to generalize knowledge to new situations - **Key to success:** Probabilistic modeling and Bayesian inference - Data efficiency is a practical challenge for autonomous robots - Three pillars of data-efficient reinforcement learning - Probabilistic model-based RL for fast learning of models and controllers - 2 Model predictive control with learned dynamics models accelerate learning and allow for safe exploration - 3 Meta learning using latent variables to generalize knowledge to new situations - **Key to success:** Probabilistic modeling and Bayesian inference Thank you for your attention ### References I - F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause. Safe Model-based Reinforcement Learning with Stability Guarantees. In Advances in Neural Information Processing Systems, 2017. - [2] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 of Optimization and Computation Series. Athena Scientific, Belmont, MA, USA, 3rd edition, 2005. - [3] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2 of Optimization and Computation Series. Athena Scientific, Belmont, MA, USA, 3rd edition, 2007. - [4] B. Bischoff, D. Nguyen-Tuong, T. Koller, H. Markert, and A. Knoll. Learning Throttle Valve Control Using Policy Search. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, 2013. - [5] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox. Multi-Task Policy Search for Robotics. In Proceedings of the IEEE International Conference on Robotics and Automation, 2014. - [6] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian Processes for Data-Efficient Learning in Robotics and Control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):408–423, 2015. - [7] M. P. Deisenroth and C. E. Rasmussen. PILCO: A Model-Based and Data-Efficient Approach to Policy Search. In Proceedings of the International Conference on Machine Learning, 2011. - [8] M. P. Deisenroth, C. E. Rasmussen, and D. Fox. Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning. In Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011. - [9] P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Model-based Imitation Learning by Probabilistic Trajectory Matching. In Proceedings of the IEEE International Conference on Robotics and Automation, 2013. - [10] P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Probabilistic Model-based Imitation Learning. Adaptive Behavior, 21:388–403, 2013. - [11] A. Girard, C. E. Rasmussen, and R. Murray-Smith. Gaussian Process Priors with Uncertain Inputs: Multiple-Step Ahead Prediction. Technical Report TR-2002-119, University of Glasgow, 2002. - [12] S. Kamthe and M. P. Deisenroth. Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control. In Proceedings of the International Conference on Artificial Intelligence and Statistics, 2018. #### References II - [13] A. Kupcsik, M. P. Deisenroth, J. Peters, L. A. Poha, P. Vadakkepata, and G. Neumann. Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills. Artificial Intelligence, 2017. - [14] T. X. Nghiem and C. N. Jones. Data-driven Demand Response Modeling and Control of Buildings with Gaussian Processes. In Proceedings of the American Control Conference, 2017. - [15] J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E. Rasmussen. Propagation of Uncertainty in Bayesian Kernel Models—Application to Multiple-Step Ahead Forecasting. In IEEE International Conference on Acoustics, Speech and Signal Processing, volume 2, pages 701–704, Apr. 2003. - [16] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. The MIT Press, Cambridge, MA, USA, 2006. - [17] S. Sæmundsson, K. Hofmann, and M. P. Deisenroth. Meta Reinforcement Learning with Latent Variable Gaussian Processes. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2018. - [18] Y. Sui, A. Gotovos, J. W. Burdick, and A. Krause. Safe Exploration for Optimization with Gaussian Processes. In Proceedings of the International Conference on Machine Learning, 2015. - [19] M. K. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In Proceedings of the International Conference on Artificial Intelligence and Statistics, 2009. $$f \sim GP(0,k)\,,$$ Training data: $oldsymbol{X},oldsymbol{y}$ $oldsymbol{x}_* \sim \mathcal{N}ig(oldsymbol{\mu},oldsymbol{\Sigma}ig)$ $$f \sim GP(0,k)\,,$$ Training data: $oldsymbol{X},oldsymbol{y}$ $oldsymbol{x}_* \sim \mathcal{N}ig(oldsymbol{\mu},\,oldsymbol{\Sigma}ig)$ $$\mathbb{E}_{f,\boldsymbol{x}_*}[f(\boldsymbol{x}_*)] = \mathbb{E}_{\boldsymbol{x}}\big[\mathbb{E}_f[f(\boldsymbol{x}_*)|\boldsymbol{x}_*]\big] = \mathbb{E}_{\boldsymbol{x}_*}\big[\frac{m_f(\boldsymbol{x}_*)}{m_f(\boldsymbol{x}_*)}\big]$$ $$f \sim GP(0,k)\,,$$ Training data: $m{X},m{y}$ $m{x}_* \sim \mathcal{N}ig(m{\mu},\,m{\Sigma}ig)$ $$\mathbb{E}_{f,\boldsymbol{x}_*}[f(\boldsymbol{x}_*)] = \mathbb{E}_{\boldsymbol{x}} \left[\mathbb{E}_{f}[f(\boldsymbol{x}_*)|\boldsymbol{x}_*] \right] = \mathbb{E}_{\boldsymbol{x}_*} \left[\frac{m_f(\boldsymbol{x}_*)}{m_f(\boldsymbol{x}_*)} \right]$$ $$= \mathbb{E}_{\boldsymbol{x}_*} \left[k(\boldsymbol{x}_*,\boldsymbol{X})(\boldsymbol{K} + \sigma_n^2 \boldsymbol{I})^{-1} \boldsymbol{y} \right]$$ $$f \sim GP(0,k)\,,$$ Training data: $oldsymbol{X},oldsymbol{y}$ $oldsymbol{x}_* \sim \mathcal{N}ig(oldsymbol{\mu},\,oldsymbol{\Sigma}ig)$ $$\begin{split} \mathbb{E}_{f, \boldsymbol{x}_*}[f(\boldsymbol{x}_*)] &= \mathbb{E}_{\boldsymbol{x}} \left[\mathbb{E}_{f}[f(\boldsymbol{x}_*) | \boldsymbol{x}_*] \right] = \mathbb{E}_{\boldsymbol{x}_*} \left[m_f(\boldsymbol{x}_*) \right] \\ &= \mathbb{E}_{\boldsymbol{x}_*} \left[k(\boldsymbol{x}_*, \boldsymbol{X}) (\boldsymbol{K} + \sigma_n^2 \boldsymbol{I})^{-1} \boldsymbol{y} \right] \\ &= \boldsymbol{\beta}^\top \int k(\boldsymbol{X}, \boldsymbol{x}_*) \mathcal{N} \big(\boldsymbol{x}_* \, | \, \boldsymbol{\mu}, \, \boldsymbol{\Sigma} \big) d\boldsymbol{x}_* \\ \boldsymbol{\beta} &:= (\boldsymbol{K} + \sigma_n^2 \boldsymbol{I})^{-1} \boldsymbol{y} \quad \text{\ref{eq:special_property}} \quad \text{independent of } \boldsymbol{x}_* \end{split}$$ $$f \sim GP(0,k)\,,$$ Training data: $oldsymbol{X},oldsymbol{y}$ $oldsymbol{x}_* \sim \mathcal{N}ig(oldsymbol{\mu},\,oldsymbol{\Sigma}ig)$ ■ Compute $\mathbb{E}[f(\boldsymbol{x}_*)]$ $$\begin{split} \mathbb{E}_{f, \boldsymbol{x}_*}[f(\boldsymbol{x}_*)] &= \mathbb{E}_{\boldsymbol{x}} \left[\mathbb{E}_{f}[f(\boldsymbol{x}_*) | \boldsymbol{x}_*] \right] = \mathbb{E}_{\boldsymbol{x}_*} \left[m_f(\boldsymbol{x}_*) \right] \\ &= \mathbb{E}_{\boldsymbol{x}_*} \left[k(\boldsymbol{x}_*, \boldsymbol{X}) (\boldsymbol{K} + \sigma_n^2 \boldsymbol{I})^{-1} \boldsymbol{y} \right] \\ &= \boldsymbol{\beta}^\top \int k(\boldsymbol{X}, \boldsymbol{x}_*) \mathcal{N} \big(\boldsymbol{x}_* \, | \, \boldsymbol{\mu}, \, \boldsymbol{\Sigma} \big) d\boldsymbol{x}_* \\ \boldsymbol{\beta} &:= (\boldsymbol{K} + \sigma_n^2 \boldsymbol{I})^{-1} \boldsymbol{y} \quad \text{\ref{eq:special_property}} \quad \text{independent of } \boldsymbol{x}_* \end{split}$$ - If *k* is a Gaussian (squared exponential) kernel, this integral can be solved analytically - Variance of $f(x_*)$ can be computed similarly $$f(\cdot) \sim GP$$ $p(\mathbf{H}) = \prod_{p} p(\mathbf{h}_{p}), \quad p(\mathbf{h}_{p}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ $$f(\cdot) \sim GP$$ $$p(\boldsymbol{H}) = \prod_{p} p(\boldsymbol{h}_{p}), \quad p(\boldsymbol{h}_{p}) = \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$$ $$p(\boldsymbol{Y}, \boldsymbol{H}, \boldsymbol{f}(\cdot)|\boldsymbol{X}, \boldsymbol{U}) = \prod_{p=1}^{P} p(\boldsymbol{h}_{p}) \prod_{t=1}^{T_{p}} p(\boldsymbol{y}_{t}|\boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{h}_{p}, \boldsymbol{f}(\cdot)) p(\boldsymbol{f}(\cdot))$$ $$\boldsymbol{y}_{t} = \boldsymbol{x}_{t+1} - \boldsymbol{x}_{t}$$ ### Variational Inference Mean-field variational family: $$\begin{split} q(\boldsymbol{f}(\cdot), \boldsymbol{H}) &= q(\boldsymbol{f}(\cdot))q(\boldsymbol{H}) \\ q(\boldsymbol{H}) &= \prod_{p=1}^{P} \mathcal{N}(\boldsymbol{h}_p | \boldsymbol{n}_p, \boldsymbol{T}_p) \,, \\ q(\boldsymbol{f}(\cdot)) &= \int p(\boldsymbol{f}(\cdot) | \boldsymbol{f}_Z) q(\boldsymbol{f}_Z) d\boldsymbol{f}_Z \quad \text{\blacktrianglerightSV-GP (Titsias, 2009)} \end{split}$$ ### **Evidence Lower Bound** $$ELBO = \mathbb{E}_{q(\boldsymbol{f}(\cdot),\boldsymbol{H})} \Big[\log \frac{p(\boldsymbol{Y},\boldsymbol{H},\boldsymbol{f}(\cdot)|\boldsymbol{X},\boldsymbol{U})}{q(\boldsymbol{f}(\cdot),\boldsymbol{H})} \Big]$$ #### **Evidence Lower Bound** $$ELBO = \mathbb{E}_{q(\boldsymbol{f}(\cdot),\boldsymbol{H})} \left[\log \frac{p(\boldsymbol{Y},\boldsymbol{H},\boldsymbol{f}(\cdot)|\boldsymbol{X},\boldsymbol{U})}{q(\boldsymbol{f}(\cdot),\boldsymbol{H})} \right]$$ $$= \sum_{p=1}^{P} \sum_{t=1}^{T_p} \mathbb{E}_{q(\boldsymbol{f}_t|\boldsymbol{x}_t,\boldsymbol{u}_t,\boldsymbol{h}_p)q(\boldsymbol{h}_p)} \left[\log p(\boldsymbol{y}_t|\boldsymbol{f}_t) \right]$$ $$- \text{KL}(q(\boldsymbol{H})||p(\boldsymbol{H})) - \frac{\text{KL}(q(\boldsymbol{f}(\cdot))||p(\boldsymbol{f}(\cdot)))}{\text{KL}(q(\boldsymbol{f}(\cdot))||p(\boldsymbol{f}(\cdot)))}$$ #### **Evidence Lower Bound** $$ELBO = \mathbb{E}_{q(\boldsymbol{f}(\cdot),\boldsymbol{H})} \Big[\log \frac{p(\boldsymbol{Y},\boldsymbol{H},\boldsymbol{f}(\cdot)|\boldsymbol{X},\boldsymbol{U})}{q(\boldsymbol{f}(\cdot),\boldsymbol{H})} \Big]$$ $$= \sum_{p=1}^{P} \sum_{t=1}^{T_p} \mathbb{E}_{q(\boldsymbol{f}_t|\boldsymbol{x}_t,\boldsymbol{u}_t,\boldsymbol{h}_p)q(\boldsymbol{h}_p)} \Big[\log p(\boldsymbol{y}_t|\boldsymbol{f}_t) \Big]$$ $$- \text{KL}(q(\boldsymbol{H})||p(\boldsymbol{H})) - \frac{\text{KL}(q(\boldsymbol{f}(\cdot))||p(\boldsymbol{f}(\cdot)))}{\text{Monte Carlo estimate}}$$ $$= \sum_{p=1}^{P} \sum_{t=1}^{T_p} \mathbb{E}_{q(\boldsymbol{f}_t|\boldsymbol{x}_t,\boldsymbol{u}_t,\boldsymbol{h}_p)q(\boldsymbol{h}_p)} \Big[\log p(\boldsymbol{y}_t|\boldsymbol{f}_t) \Big]$$ $$- \text{KL}(q(\boldsymbol{H})||p(\boldsymbol{H})) - \frac{\text{KL}(q(\boldsymbol{F}_{\boldsymbol{Z}})||p(\boldsymbol{F}_{\boldsymbol{Z}}))}{\text{KL}(q(\boldsymbol{F}_{\boldsymbol{Z}})||p(\boldsymbol{F}_{\boldsymbol{Z}}))}$$ closed-form solution