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Abstract

In this thesis, an online-computation approach to optimal finite-horizon state-feed-

back control of nonlinear stochastic systems is presented. In the considered discrete-

time case, the state space and the control space are continuous-valued sets. For non-

linear, noise-a↵ected systems, exact analytic solutions to the optimal control problem

do not exist in general. Therefore, appropriate approximations are inevitable.

A two-step algorithm is proposed in this thesis. In the first step, an optimal solution

to a simplified problem is derived. In the second step of the algorithm, this result is

employed as prior knowledge to derive an improved solution to the original optimal

control problem. In both steps, dynamic programming is employed.

With the employment of dynamic programming, the optimal control problem is re-

formulated as a minimization problem. In the first step of the proposed algorithm,

the value function of the stochastic dynamic programming algorithm is approximated

by means of Taylor series expansion up to second-order derivatives, which results in a

simplification of the problem. The approximation serves as a basis for the derivation

of a stochastic minimum principle for the discrete-time case, where the properties

of a stochastic Hamilton function are employed. With these theoretical results, the

minimization problem is reformulated as a two-point boundary-value problem. The

arising nonlinear equation system is solved numerically by means of a continuation

process, which yields an optimal control sequence to the simplified problem.

In the second step of the algorithm, the control sequence solving the two-point

boundary-value problem is employed. The current system state is propagated through

the system equation by means of the unscented transformation, which approximately

yields sequences of expectation values and covariances of the successor states. De-

pending on these means and covariances, an adaptive grid of few points is defined,

which changes each time step to incoporate current knowledge. On this grid, the

stochastic dynamic programming algorithm can be employed to obtain an improved

state-feedback control for the current time step. Instead of performing dynamic pro-

gramming directly on this grid, the value function is piecewisely approximated by

means of cubic splines. Hence, an approximate solution to the nonlinear optimal con-

trol problem for continuous-valued control variables as well as for a continuous-valued

domain of the system state is obtained.

The proposed online-computation algorithm is analyzed by means of scalar example

systems, where the technically important model predictive control is implemented.
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CHAPTER 1

Introduction

When considering control problems of practical engineering applications, nonlinear control the-

ory is the basis to obtain optimal results. To control a system optimally means to influence its

behavior, such that a desired goal is achieved in an optimal way. Current research treats the

problem of controlling the robots depicted in Figure 1.1 in an optimal way.

(a) Walking machine HW-II, Machine Con-

trol Laboratory, Osaka University.

(b) Prototype of a 6 DOF robot, Intelli-

gent Sensor-Actuator-Systems Laboratory,

Universität Karlsruhe (TH).

Figure 1.1: Robots in current research applications.

A standard application in robotics is path planning as illustrated by Figure 1.2. The aim is that

the robot in the lower left corner of the room moves across the room to reach the destination in

the upper right corner. Several points have to be borne in mind to achieve the desired result.

Cost Function. In many cases, it is desirable that the robot reaches the destination e�ciently,

that is, the objective is a movement along the shortest path and the avoidance of collisions.

Hence, a cost function is introduced to incorporate these constraints. In the considered path

planning example, the cost function assigns a certain value to any state-input combination. To

reach the destination optimally means to minimize this cost function, which is a main aspect

3
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start

robot

destination

Figure 1.2: Path planning. The robot’s objective is to move across the room to reach its destination.

of the desired controller. The incorporation of additional of constraints in the cost function is

possible.

Nonlinearities. Most realistic systems have to be described with nonlinear system models. For

example, motions of the depicted robots are described involving trigonometric functions. Even

if these functions are well known, nonlinear controllers are not easy to design. Unfortunately,

nonlinear systems have some special di�culties compared to linear systems. A main point is

that, in contrast to linear optimization, an analytical solution to the nonlinear optimization

problem cannot be obtained in general. Therefore, the minimization of the cost function is a

challenging task, especially in case of nonlinear systems.

Since linear controllers are well known, an obvious approach to nonlinear optimal control is the

linearization of the system function around the mean of the current system state and subsequent

application of a linear controller. Compared to nonlinear controllers, linear controllers are easy

to design. In case of a quadratic cost function, the linear quadratic controller (LQ controller),

which employs measurements of the state (state-feedback), provides an optimal linear solution

to linear control problems [ÅW97]. When the level of nonlinearity of the considered system

increases, the quality of the solutions provided by the linearized controller decays. Therefore,

alternative approaches to linearization have to be employed to improve the quality of the

desired controller, even if no tool or methodology in nonlinear systems analysis is universally

applicable [Vid02]. Therefore, for each controller, a tradeo↵ between simplicity and exactness

has to be found.

Noise Influence. Besides the nonlinearity of dynamic systems, noise is another issue to be

considered to obtain a more realistic model of the true system. Usually, noise can be regarded

as a random process with a given distribution. A common assumption is that white noise

influences the system, when control problems for noise-a↵ected systems are considered.

4



In case of a deterministic system, the successor state of the current state is exactly known, that

is, this specific successor state will be attained with probability one. When a random process

a↵ects the system, it is not possible to predict the next state with certainty. However, depending

on the distribution of the noise, it is possible to predict a range of possible successor states

by means of the underlying system model. In case of the path planning example, inaccuracies

of the measurement of the current robot position or incidences like friction or slip can be

considered as noise disturbances. Moreover, a common assumption is that the environment of

the robot is not known exactly. For example, the size of the room and the current position are

known, but possible obstacles inside the room are unknown. Another possible reason to consider

noise, is the simplification of a given system model. In case of a very complex system model,

several parts of the system can be modeled as noise, such that the whole model is simplified.

Systems su↵ering from noise processes are called stochastic or probabilistic. Since the state of

a probabilistic system may deviate significantly from the deterministic one, that is, the system

state without noise disturbances, the consideration of noise is desired when designing controllers

for realistic systems. However, this additional aspect causes serious problems in calculations.

Decision-Making Horizon. When talking about optimal controllers, the decision-making

horizon, that is, the time interval, which is considered to determine the optimal control, is

a further point to be considered. On the one hand, the problem can theoretically be captured

completely in case of the consideration of a long, maybe infinite, horizon. On the other hand,

the analysis to derive an optimal solution becomes di�cult. This is due to the fact that exact

calculations may depend on the convergence of iterations, which cannot be guaranteed in gen-

eral. In case of infinite-horizon problems, the behavior of the system over a long time interval

and the additional information, which is needed to be precise, have to be considered. Thus,

the model of the whole system gets more and more complex and results in a computational

e↵ort, which is not feasible anymore. Therefore, assumptions have to be made, which cannot

be justified in general, for example, a discounting factor of future cost.

A possible solution to the described problem is provided by model predictive control (MPC),

also known as receding horizon control or moving horizon control. MPC is often applied to

real systems to avoid computational di�culties. Instead of the consideration of an infinite

horizon, in MPC the optimal control problem is restricted to be solved for a finite horizon

[k, k + N ], where the current time step is denoted by k. With this approach, the problem of

the determination of closed-loop solutions is circumvented, since the optimal control problem

is solved only for the current system state. The first part of the optimal state-feedback control

is applied open-loop to the system for one time step. Since the optimal control problem has

to be solved only for the current system state and not for all system states simultaneously, the

solution is much easier to obtain [Fin04].

In case of the path planning example, where the robot has to reach the destination e�ciently,

the MPC steps are illustrated in Figures 1.3 and 1.4. In Figure 1.3(a), the initial robot position

is shown, where the current decision-making horizon of N time steps is indicated by the dashed

5



Chapter 1. Introduction

start

robot

destination

(a) Initial position of the robot. The optimal path within

the decision-making horizon is indicated by the black,

dashed line.

start

destination

?

(b) Detection of an obstacle. To avoid a collision, the

robot has to change its orientation and to determine a

new path.

Figure 1.3: Path planning and model predictive control, initial steps. The robot moves toward the destination,

while minimizing the cost function within the decision-making horizon.

line. Possible obstacles inside the room are not known. The robot determines a path minimizing

the distance to the destination without hitting the obstacle, which is not considered in the

current decision-making horizon. When the optimal state-feedback control for the current

system state is determined and applied to the real system, the finite-horizon window is shifted

by one time step to [k +1, k +1+N ], such that after the next sampling an appropriate control

is again determined for the full N -step horizon. After several time steps, the obstacle is in

reach, and the robot realized that it has to adjust the intended path as shown in Figure 1.3(b).

The adjustment of the orientation of the robot and the resulting new path is depicted in

Figure 1.4(a), where the robot plans to move aside the obstacle without collision. After passing

the obstacle, the robot again adjusts its orientation and moves directly toward the destination

as is depicted in Figure 1.4(b).

The path planning example illustrates that MPC provides only a suboptimal solution, since

the robot does not necessarily move along the true optimal trajectory. This is caused by the

fact that the obstacle cannot be incorporated into the control decision from the beginning. The

comparison of a possibly optimal path and the path provided by MPC in case of the considered

robot example is shown in Figure 1.5. The optimal path (blue, dotted) is shorter than the

MPC path (black, dashed), due to the triangular inequality. Although MPC provides only

suboptimal solutions, the computational e↵ort and the complexity of the system model are

reduced significantly in case of MPC compared to the infinite-horizon controller. Hence, MPC

is an attractive approach and, therefore, often employed in technical applications.

Reflecting the properties and problems arising from the nonlinearity of the system, the noise

influence, and the decision-making horizon, the design of an optimal state-feedback controller

6



start

destination

(a) Change of the orientation and the intended path to

avoid the collision. The robot moves aside the obstacle.

start

destination

(b) Overcoming the obstacle and proceeding toward the

desired destination.

Figure 1.4: Path planning and model predictive control, obstacle avoidance. After the identification of the obstacle,

the intended path is changed to avoid collisions.

start

robot

destination

Figure 1.5: Optimal and MPC trajectories of the path planning example. Due to the finite horizon, MPC is not

able to obtain the optimal solution (blue, dotted) in general. Therefore, a suboptimal solution (black, dashed) is

obtained.

7



Chapter 1. Introduction

for nonlinear stochastic systems is both interesting and di�cult and, therefore, worth to deal

with.

In this thesis, an approach to optimal finite-horizon control of nonlinear, stochastic, discrete-

time systems is provided. Starting from the original dynamic programming equation, the value

function is approximated by means of Taylor series expansion, such that a minimum princi-

ple can be applied. Then, a candidate for the optimal control sequence for a finite horizon

is obtained. These state-feedback controls are employed as prior knowledge to a subsequent

algorithm, which determines an adaptive grid of few points, on which stochastic dynamic pro-

gramming is performed. Piecewise cubic spline interpolation of the value function yields an

approximate solution to the continuous-valued optimal control problem, in the control variable

as well as in the state variable.

The remainder of this thesis is structured as follows. In Chapter 2, the considered system is

introduced. Moreover, problems originating from nonlinear optimization are discussed. A pos-

sible solution method, that is, dynamic programming, is presented, which is the basic tool in

this thesis. The chapter is concluded with an overview of related work. In Chapter 3, the idea

of the proposed new approach to optimal control of nonlinear noise-a↵ected systems is treated

in theoretical as well as in practical methods. Simulation results by means of scalar example

systems are presented in Chapter 4 to analyze the properties of the proposed algorithms. Fi-

nally, in Chapter 5, the contents of this thesis is summarized, and a survey of future work is

given.
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CHAPTER 2

Considered Optimal Control Problem

2.1 Problem Formulation

Let the considered discrete-time system be given by

x
k+1 = f(x

k
, u

k
) + w

k
, k = 0, . . . , N � 1 , (2.1)

where x
k
2

n denotes the system state at time step k, u
k
2

m the control variable, and

f : n
⇥

m
!

n a nonlinear function. w
k
2

n is an independent additive noise term

with mean value zero and covariance ⌃w. In the considered finite-horizon case, the terminal

time is denoted by N . The initial state x̂0 is assumed to be known. Moreover, the state is

directly accessible after each time step, that is, the probability density function of the state

can be interpreted as a Dirac function. Therefore, it is not necessary to estimate the state.

The random noise w
k

is independent of prior disturbances w
k�1, . . . ,w0 and characterized by

a well-defined probability density function Pw

k
. Since the density of the noise is assumed to be

time-invariant, the time index k is omitted in the following. The considered system is depicted

in Figure 2.1.

delay
xk+1 xk

u�k(xk)

wk

system

controller

xk

system behavior

xk

Figure 2.1: Considered stochastic system. The system state is directly accessible after each time step. The

controller determines optimal state-feedback controls.

The system state satisfies the Markov property, that is, the state x
k+1 depends only on its

direct predecessor x
k
, the control variable u

k
, and the noise term w

k
at time step k. Therefore,

9



Chapter 2. Considered Optimal Control Problem

future states depend only on events of one time step before, and

P(x
k+1|xk

, . . . , x0, uk
, . . . , u0, wk

, . . . , w0) = P(x
k+1|xk

, u
k
, w

k
) . (2.2)

Definition 2.1 (Control law) A control law is a mapping

µ
k

:

(
n
!

m

x
k
7! µ

k
(x

k
) = u

k

that maps states x
k
2

n onto controls u
k
2

m.

For an initial state x̂0 and a policy1
⇡ := (µ

0
, . . . , µ

N�1
), the states x

k
can be described as ran-

dom variables x
k
, k = 1, . . . , N , with distributions defined through the system equation (2.1),

that is,

x
k+1 = f(x

k
, µ

k
(x

k
)) + w

k
, k = 0, . . . , N � 1 .

2.1.1 Measure of Quality

To define optimality, a measure of quality is required. Therefore, a cost function2 to be min-

imized is introduced. In case of stochastic systems, an obvious approach is to define the cost

function at a specific time step as the expected cost-to-go up to the terminal time N . Therefore,

the cost function of the control sequence ⇡ starting at x̂0 is given by

V⇡(x̂0) := E
w0,...,wN�1

"
g̃N(x

N
) +

N�1X

k=0

g̃k(xk
, µ

k
(x

k
), w

k
)

#
(2.3)

for known functions g̃k, k = 0, . . . , N � 1. The function g̃k(xk
, u

k
, w

k
) describes the transition

cost from time step k to k + 1 depending on the system state x
k
, the applied control action u

k
,

and the noise term w
k
. The function g̃N only depends on the terminal state and represents the

terminal cost.

2.1.2 Objective

The objective is to establish a sequence of optimal control laws

µ
⇤
k

:

(
n
!

m

x
k
7! µ

⇤
k
(x

k
) = u

⇤
k

, k = 0, . . . , N � 1

mapping the states x
k

onto optimal state-feedback controls u
⇤
k

= µ
⇤
k
(x

k
), such that the se-

quence (u⇤0, . . . , u
⇤
N�1) minimizes the cost function (2.3). This means, an optimal policy ⇡

⇤ :=

(µ⇤
0
, . . . , µ

⇤
N�1

) is desired with

J(x̂0) := V⇡⇤(x̂0) = min
⇡

 
E

w0,...,wN�1

"
g̃N(x

N
) +

N�1X

k=0

g̃k(xk
, µ

k
(x

k
), w

k
)

#!
. (2.4)

1 sequence of control laws
2 also known as performance index
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2.2. Dynamic Programming

Definition 2.2 (Value function) The function J in (2.4), that is, the minimal expected cost-

to-go, is called minimal cost function or value function.

2.2 Dynamic Programming

When considering (2.4), a seemingly obvious solution to the minimization problem is to cal-

culate the corresponding cost functions (2.3) for all possible combinations of control laws

µ
k
, k = 0, . . . , N � 1, and then to determine the minimizing policy ⇡

⇤. Since this approach is

computationally infeasible, a more sophisticated procedure is desired, for instance, the dynamic

programming algorithm, which is introduced in the following.

2.2.1 Introduction and Assumptions

In most cases, nonlinear optimization is based on search algorithms or on the employment of the

Karush-Kuhn-Tucker conditions for optimality [SS02]. In contrast to these methods, dynamic

programming is an optimization algorithm, which theoretically determines the exact solution

to the optimal control problem for finite-horizon Markov decision processes.

Remark 2.1 To apply dynamic programming, the system state has to satisfy the Markov

property (2.2). Furthermore, the cost function to be minimized has to be additive over time.

In the considered case of finite-horizon optimal state-feedback control, the objective is to min-

imize the cost function (2.3) and to determine the minimizing control variables for the entire

decision-making horizon. Instead of the consideration of all possible combinations of system

states and control decisions for all time steps, dynamic programming recursively determines

the solution to appropriate subproblems. Although the use of dynamic programming in nonlin-

ear optimization is limited to some fairly straightforward applications, its use in these is both

valuable and instructive [Ber00a]. A detailed introduction to dynamic programming and its

applications is given in [Ber87, Ber00a, Ber00b, Put05].

Theorem 2.1 Let ⇡
⇤ = (µ⇤

0
, . . . , µ

⇤
N�1

) be a sequence of optimal control laws for the minimiza-

tion problem (2.4). The subproblem to be considered is that the current state is given by x
i
,

and the expected cost-to-go from time step i up to time step N

V⇡i(xi
) = E

wi,...,wN�1

"
g̃N(x

N
) +

N�1X

k=i

g̃k(xk
, u

k
, w

k
)

#

shall be minimized. Then, the truncated sequence

⇡
⇤
i

= (µ⇤
i
, . . . , µ

⇤
N�1

)

is optimal for this subproblem [Ber00a].

This property is called principle of optimality.

Proof. A proof of the principle of optimality is given in [Put05]. ⇤
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2.2.2 Value Function

Theorem 2.1 reveals the principle of optimality, the basic idea of dynamic programming. The

dynamic programming algorithm starts the optimization procedure at the terminal time N and

proceeds backward in time to the starting time 0. The recursively defined value function at

time step k depends on the result of the previous calculation and is defined as

Jk(xk
) := min

uk

✓
E
wk

⇥
g̃k(xk

, u
k
, w

k
) + Jk+1(xk+1)

⇤◆
, (2.5)

where the terminal cost incurring at time step N is denoted by

JN(x
N

) = g̃N(x
N

) .

The term Jk+1(xk+1) summarizes the minimal expected cost up to the terminal state x
N

starting

from a fixed state x
k+1. When the algorithm calculates the cost for the currently considered

state x
k
, the state x

k+1 is not exactly known anymore. Therefore, the state x
k+1 has to be

considered as a random variable x
k+1, which is obtained by a one-step prediction starting from

x
k

for given u
k

according to (2.1). Because of the additivity of the noise term in (2.1), the

distribution Px

k+1 of x
k+1 depends on the distribution of the noise vector w

k
.

Remark 2.2 With the assumption of a Markov decision process and the additivity of the value

function (2.5), the requirements of Remark 2.1 are fulfilled.

Reformulation of the Value Function

According to [BS96], (2.5) can be substituted by

Jk(xk
) = min

uk

✓
gk(xk

, u
k
) + E

wk

⇥
Jk+1(xk+1)

⇤◆
, (2.6)

where

gk(xk
, u

k
) :=

Z

n

g̃k(xk
, u

k
, w

k
) Pw(w

k
) dw

k
,

and Pw(w
k
) denotes the probability density function of the noise term. The terminal cost

JN(x
N

) = gN(x
N

) (2.7)

is independent of the control variable.

Definition 2.3 (Bellman equation) Equation (2.6) is referred to as Bellman equation, op-

timality equation, or dynamic programming equation.

2.2.3 Recursive Calculation of the Minimal Expected Cost-to-Go

Theorem 2.2 For every initial state x̂0, the minimal expected cost-to-go J(x̂0) of (2.4) is

equal to J0(x̂0), where the function J0 is given by the last step of the following algorithm, which

proceeds backward in time from time step N to time step 0.

12



2.2. Dynamic Programming

Algorithm 1 Dynamic programming

1: JN(x
N

) = gN(x
N

) . determination of the terminal cost

2: for k = N � 1 to 0 do

3:

Jk(xk
) = min

uk

✓
gk(xk

, u
k
) + E

wk

⇥
Jk+1

�
f(x

k
, u

k
) + w

k

�⇤◆
(2.8)

µ
⇤
k
(x

k
) = arg min

uk

✓
gk(xk

, u
k
) + E

wk

⇥
Jk+1

�
f(x

k
, u

k
) + w

k

�⇤◆
(2.9)

4: end for

5: J(x̂0) = J0(x̂0)

Proof. A general proof can be found in [Ber00a] or [Put05]. ⇤

2.2.4 Properties of Dynamic Programming

Dynamic programming provides a general framework for solving nonlinear optimization prob-

lems with additive cost functions. The e�cient backward algorithm computes the expected

total cost for the entire decision-making horizon. Furthermore, the minimal expected cost-to-

go from each time step to the end of the regarded horizon is obtained for any optimal sequence

of control laws. At each time step, the results of the previous step are employed. Then, the

computation at time step k requires only the knowledge of the transition cost gk, the transition

density Px

k+1( · |xk
, u

k
), and the result Jk+1 of the previous time step. Because of the Markov

property, Jk depends on former states and decisions only through the state x
k
. Therefore, the

computational e↵ort is reduced significantly, compared with a brute force algorithm, that is,

the evaluation of all possible control sequences. If u
⇤
k

= µ
⇤
k
(x

k
) minimizes the right-hand side

of (2.8) for each x
k

and k, the control sequence (u⇤0, . . . , u
⇤
N�1) is optimal.

Remark 2.3 Instead of performing the minimization over all possible control sequences ⇡k =

(µ
k
, . . . , µ

N�1
), dynamic programming recursively determines the optimal state-feedback con-

trol u
⇤
k

for each time step, which reduces the computational e↵ort significantly.

Even if Algorithm 1 can be employed to derive closed-form expressions for the value function

Jk, analytical solutions cannot be obtained in many practical problems. In these cases, nu-

merical solutions are inevitable, which require much computation time. Nevertheless, dynamic

programming is the only general approach for sequential optimization in case of stochastic sys-

tems. Especially in case of finite-horizon, discrete-time Markov decision processes with a finite

number of states, dynamic programming provides an e�cient method for solving the optimal

control problem. Thus, dynamic programming is often employed as the basis for practical, but

suboptimal, approaches [Ber00a].
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Remark 2.4 In the special case of finitely many states in each computation step, the structure

of dynamic programming allows an initial o✏ine computation of the algorithm. Then, a look-

up table is obtained, which contains the optimal state-feedback control for each state and each

time step of the considered horizon. During runtime, the optimal control can be determined

with the pre-calculated look-up table.

Review: Problems caused by noise a↵ecting nonlinear systems

To obtain the optimal value u
⇤
k

solving the minimization problem (2.6), a nonlinear op-

timization method is needed, which is a di�cult task in general, especially when noise

a↵ects the system. Additional di�culties originating from the system stochastics to de-

rive an analytically exact solution are indicated in the following. Equation (2.6) can be

reformulated, such that

Jk(xk
) = gk(xk

, u
⇤
k
) + E

wk

⇥
Jk+1(xk+1)

⇤

= gk(xk
, u
⇤
k
) +

Z

n

Px

k+1(xk+1|xk
, u
⇤
k
)Jk+1(xk+1) dx

k+1 (2.10)

with a transition density Px

k+1(xk+1|xk
, u
⇤
k
). Using the fact that noise a↵ects the system

additively, (2.10) can be rewritten by means of

Jk(xk
) = gk(xk

, u
⇤
k
) +

Z

n

Pw(x
k+1 � f(x

k
, u
⇤
k
))Jk+1(xk+1) dx

k+1 , (2.11)

where Pw(w
k
) denotes the noise density. It is important to mention that w

k
= x

k+1 �

f(x
k
, u
⇤
k
). Owing to the integral, no general analytical solution to (2.11) is known, even

if Pw is a Gauss function. The complexity of the equation arises, since the stochastics of

the system require the consideration of the expectation value. Therefore, exact solutions

to the optimal control problem for nonlinear probabilistic systems do not exist in general,

and suboptimal solutions have to be derived.

2.2.5 Computational E↵ort in Case of Discrete Problems

With Q states and M possible controls at each computation step, the dynamic program-

ming algorithm requires NMQ
2 multiplications to evaluate and determine the optimal policy.

Therefore, the dynamic programming algorithm is of order

O
�
NMQ

2
�

. (2.12)

By contrast, a brute force algorithm, where (MQ)N deterministic Markov policies are consid-

ered, is of exponential order. The direct evaluation of each of these policies requires NMQ

multiplications. Taking everything into account, the brute force algorithm is of order

O
�
M

QN+1
QN

�
.
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Thus, the dynamic programming algorithm yields a significant reduction of computation time.

2.2.6 Limits of Dynamic Programming

According to (2.12), the computational requirements of dynamic programming are overwhelm-

ing, when the number of states and controls becomes large. Thus, suboptimal solutions are

required in many technically applications. There are two general approaches to obtain approx-

imate solutions. In the first approach, the original problem is approximated. In the second

approach, the dynamic programming algorithm for the original problem is approximated by a

computationally simpler one. These methods are called problem approximation and algorithm

approximation, respectively.

Problem Approximation

Discretization of continuous state- or control spaces is a common method to simplify the prob-

lem. The infinite (and possibly uncountable) state space is replaced with a finite set of states.

Furthermore, the system equation has to be adapted appropriately. In this case, the transition

mappings can be described by means of matrices. Then, the dynamic programming algorithm

yields an optimal solution to the simplified problem. Detailed examples of this kind of problem

approximation are given in Appendix F.3 and [Dei04].

Value Function Approximation

When considering the approximation of the algorithm, an explicit discretization of the state

space is not necessary. The general idea is to approximate the value function Jk(xk
) by means of

a suitable function J̃k(xk
, r

k
), where r

k
denotes a vector of proper parameters. An example for

value function approximation is given in [NB03], where the value function is approximated by

means of a radial basis function network with a finite number of Gaussian kernels. Evaluation of

this network at the mean values of the Gauss functions yields a finite Markov decision problem,

which can be solved approximately.

2.3 Related Work

Since dynamic programming o↵ers a general framework to solve the optimal control problem

for nonlinear systems, numerous approaches are based on this algorithm. In case of finite state

and control spaces, dynamic programming is able to derive the correct solution to the optimal

control problem for deterministic and stochastic systems [Ber00a].

If the state and control spaces are considered as continuous-valued sets, dynamic programming is

not directly applicable in general, since the solution of the Bellman equation (2.6) is a di�cult
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task in general. Several approaches to obtain approximate solutions to the optimal control

problem for nonlinear systems with continuous state spaces can be found in the literature.

Standard approximations employ state space discretization to apply dynamic programming,

since dynamic programming is in general not directly applicable in case of nonlinear systems

with continuous-valued state spaces. All these discretization schemes su↵er from the curse of

dimensionality. To reduce this e↵ect, value function approximation is often employed. For an

infinite horizon, such an approximation scheme by means of radial basis functions is proposed

in [NB03], which also leads to an indirect discretization of the problem.

Alternatively, optimality conditions can be derived to avoid the evaluation of the Bellman

equation (2.6). Employing the dynamic programming equation (2.6), Pontryagin’s maximum

principle3 o↵ers necessary optimality conditions in case of deterministic systems, in continuous

time as well as in discrete time [Ber00a]. These conditions can be employed to reformulate the

optimal control problem as a two-point boundary-value problem (TPBVP) that is numerically

solvable.

Pontryagin’s maximum principle has been extensively discussed in numerous articles in case of

stochastic, but continuous-time, systems. In [CH94], a stochastic maximum principle for singu-

lar control problems is introduced, where linear dynamics, convex cost, and convex constraints

are considered, such that convex optimization methods can be employed. This approach is

extended in [BM05], where necessary optimality conditions for singular control problems are

derived for a continuous-time, nonlinear system. The considered control domain is not neces-

sarily convex anymore. Hence, convex analysis methods are replaced with the perturbation of

the optimal system input. To treat continuous-time stochastic problems, a common assump-

tion is an underlying Ito process to represent the influence of white noise. A general stochastic

minimum principle for continuous-time systems in local form is presented in [Pen90]. There,

a variational approach is employed to derive adjoint equations and, subsequently, a global

maximum principle in case of non-convex control domains. Combining Ito’s Lemma with the

stochastic dynamic programming formulation, Pontryagin’s maximum principle is extended to

continuous-time stochastic systems in [RRD04]. This approach is based on the equivalence of

the adjoint equations of the maximum principle and the partial derivatives of the objective

function with respect to the state variable of the dynamic programming approach.

Based on this assumption, in [LW02], the existence of solutions to a stochastic two-point

boundary-value problem is examined, resulting from the application of the maximum prin-

ciple. An expedient approach to solve the nonlinear equation system resulting from the TP-

BVP numerically, is to employ a continuation process [RD83]. Thereby, a solution to an easily

solvable initial problem can be calculated. While the initial problem is being continuously

transformed into the original problem, the solution is being traced. In [OF94], stabilizing con-

tinuation processes are proposed to derive a solution to an optimal control problem of nonlinear,

continuous-time systems with general boundary constraints. The optimal control problem is

3 Pontryagin’s maximum principle can be employed to minimize a function f by maximizing

�f .
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reformulated as an initial value problem of finite-dimensional ordinary di↵erential equations,

which can be solved numerically. In [Oht00], the time domain of a continuous-time system with

general boundary constraints is modified by means of a continuation process. The initialization

of a one-point horizon yields an optimal input to a nonlinear system, which is traced toward

the solution for the whole considered horizon of length T , such that model predictive control

can be applied. Another approach to employ a continuation method in the area of optimal

control of nonlinear systems is to initialize the continuation process with a related linear sys-

tem. A continuous transformation of this linear system toward the original nonlinear system,

while tracing the solution, yields the desired control of the original system. For a deterministic

continuous-time system, this idea has been successfully applied in [TJ79].

Nevertheless, an equivalent to the maximum principle or the TPBVP for stochastic systems

in the technically important discrete-time case has not been found in literature yet. This lack

may be due to the fact that the properties of the Ito process and Taylor series expansion with

respect to the time variable cannot be equivalently applied to nonlinear, discrete-time systems.

Therefore, alternative solutions have to be employed to solve the optimal control problem for

discrete-time, stochastic systems approximately. A possible approximation scheme is given by

value function approximation.

A common approach to value function approximation is to interpolate the value function. The

interpolating function o↵ers an easier representation of the original function. Only a small

parameter set has to be stored to describe the interpolant completely. Besides, only a small

number of grid points are required, compared with simple state space discretization. Therefore,

dynamic programming can be performed more e�ciently. The Bellman equation of the interpo-

lation scheme is formally equivalent to the Bellman equation of a stochastic model on a fine grid,

and all the convergence properties for this model carry over to the interpolation model. Linear

interpolation is very popular and easy, but su↵ers from low accuracy [JK01]. Hence, higher-

degree polynomials are employed to improve the accuracy. One main problem with these poly-

nomials is that they tend to oscillations. Moreover, minimization becomes a serious problem.

Because of that, piecewisely defined lower-degree polynomials, that is, linear, quadratic [Sch83],

or cubic [JSS+93], are exploited to avoid those problems. In case of known properties of the

value function, for instance, concavity or monotony, general parametric approximation schemes

may fail to preserve these properties [Jud98]. Therefore, in [Sch83], shape-preserving splines

are proposed to keep known properties of the value function. Unfortunately, it may happen

that the value iteration algorithm [Ber00b], which solves the Hamilton-Jacobi-Bellman equation

iteratively for an infinite horizon, diverges, when these splines are employed. Only with sev-

eral assumptions, shape-preserving splines avoid this divergence, which is proved in [JS94]. In

many practical cases, the value function is assumed to be twice continuously di↵erentiable. To

guarantee continuity of the approximating function up to and including the second derivative,

cubic polynomials, such as Hermitian polynomials or cubic splines, are required [dB78].

Taking everything into account, dynamic programming provides exact solutions to the optimal

control problem in case of finite sets of states and controls. In the more realistic case of
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continuous-valued state and control spaces, promising approaches to solve the optimal control

problem, exist for deterministic (discrete-time and continuous-time) systems, when Pontryagin’s

maximum principle is employed. This approach can be extended to continuous-time, noise

a↵ected systems. However, for the technically important discrete-time systems su↵ering from

noise disturbances, no general approach exists. Therefore, in this thesis, an approach to optimal

control of nonlinear, stochastic, discrete-time systems with continuous state and control spaces

is provided.
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CHAPTER 3

New Approach to Optimal Control of Nonlinear

Noise-A↵ected Systems

Exact analytical solutions to the continuous-valued optimal control problem for nonlinear, noise-

a↵ected systems do not exist in general, and suboptimal solutions have to be derived [Ber00a].

One possible approximation scheme to obtain such a solution by means of the dynamic pro-

gramming approach is described in the remainder of this chapter.

Review: Objective

For the discrete-time system

x
k+1 = f(x

k
, u

k
) + w

k
, k = 0, . . . , N � 1 , (3.1)

the objective is to establish an optimal control law

µ
⇤
k

:

(
n
!

m

x
k
7! µ

⇤
k
(x

k
) = u

⇤
k

that maps the states x
k

onto optimal controls u
⇤
k

= µ
⇤
k
(x

k
) minimizing the expected cost-

to-go. The recursively defined value function employed by DP to determine the minimal

expected cost-to-go, is given by

JN(x
N

) = gN(x
N

) (3.2)

Jk(xk
) = min

uk

✓
gk(xk

, u
k
) + E

wk

⇥
Jk+1(xk+1)

⇤◆
, k = N � 1, . . . , 0 . (3.3)

Starting from the recursive Bellman equation (3.3), the value function is approximated by means

of Taylor series expansion up to second-order derivatives in the proposed approach. Then, a

stochastic version of the minimum principle is derived, where the definition of a stochastic

Hamilton function is employed. Incorporating costate equations1, the optimal control problem

1 also known as adjoint equations
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is reduced to a two-point boundary-value problem for the approximated value function. The

resulting nonlinear equation system is solved numerically. A continuation process is a promis-

ing method to reduce numerical problems when solving this equation system and, therefore,

employed in this thesis. The control sequence solving the two-point boundary-value problem

is employed as prior knowledge to a subsequent algorithm, which explicitly considers the noise

influence. An adaptive grid of few points is determined to restrict the state space. On this

grid, stochastic dynamic programming is performed, where a piecewise interpolation of the

value function by means of cubic splines is employed. Finally, an approximate solution to the

optimal control problem of stochastic, nonlinear systems is derived, which treats the control

variable as well as the state variable continuously.

3.1 Theoretical Results

In the following, the theoretical results of this thesis are described to develop the approxi-

mate solution to the considered continuous-valued optimal control problem of nonlinear, noise-

a↵ected systems.

In Section 3.1.1, the value function is approximated in order to rewrite the optimal control

problem as an equivalent minimization problem2. Section 3.1.2 deals with the derivation of a

stochastic minimum principle, which is applied to the considered approximated value function.

Possible extensions of the value function approximation are discussed in Section 3.1.3. The

minimization problem is treated in Section 3.1.4. How the resulting control sequence is em-

ployed as prior knowledge to a subsequent algorithm to restrict the state space, is described in

Section 3.1.5. Finally, the accuracy of cubic spline interpolation is analyzed in Section 3.1.6.

3.1.1 Approximation of the Value Function

There are two reasons to approximate the value function. As described in Section 2.2.6, the

value function can be approximated to perform dynamic programming without explicit dis-

cretization of the state space. Furthermore, the approximation of the value function can be

employed to determine an estimate of the minimal expected cost-to-go without the desire to

apply the minimizing control sequence. Possible applications can be found, for instance, in

economy, finance, and engineering, where estimates of the minimal expected cost-to-go are

often required.

Notation. In the following, u
⇤
k

denotes a minimizing vector u
k

of (3.3).

With the assumption that third- and higher-order derivatives are negligible, an approximation

of Jk+1 in (3.3) by means of Taylor series expansion up to second-order derivatives around the

2 with respect to the approximated value function
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deterministic part f(x
k
, u
⇤
k
) of the state

x
k+1 = f(x

k
, u
⇤
k
) + w

k

is given by

Jk+1(xk+1) ⇡ Jk+1

�
f(x

k
, u
⇤
k
)
�

+
@Jk+1

�
f(x

k
, u
⇤
k
)
�

@x
k+1

w
k
+

1

2
wT

k
Hk+1

�
f(x

k
, u
⇤
k
)
�
w

k
, (3.4)

where Hk denotes the Hesse matrix of the value function. Then, the approximation of the value

function Jk(xk
) in (3.3) is given by

Jk(xk
) ⇡ g(x

k
, u
⇤
k
) + Jk+1

�
f(x

k
, u
⇤
k
)
�

+
1

2
tr
⇣
⌃wHk+1

�
f(x

k
, u
⇤
k
)
� ⌘

, (3.5)

where the property

wT
k
Hk+1wk

= tr
⇣
w

k
wT

k
Hk+1

⌘

has been exploited. The covariance matrix of the noise term is given by

⌃w = E
wk

⇥
w

k
wT

k

⇤
.

Moreover, the gradient in (3.4) vanishes, due to the zero-mean of the noise term together with

the computation of the expectation value. A recursive calculation of the Hessian is given later

in Theorem 3.3.

Remark 3.1 It is important to mention that (3.5) is similar to the value function of a

deterministic system. The only di↵erence is the last term

1

2
tr
⇣
⌃wHk+1

�
f(x

k
, u
⇤
k
)
� ⌘

, (3.6)

which is caused by the incorporation of the noise influence.

Considering (3.5), the value function Jk and its Hesse matrix Hk are evaluated at states, which

would originate from a deterministic state propagation given by

x
k+1 = f(x

k
, u
⇤
k
) . (3.7)

Because of that, the state propagation (3.7) is su�cient to determine the value of the value

function, if the approximation (3.5) is employed at each time step, that is,

J0(x0) ⇡ g(x0, u
⇤
0) +

NX

k=1

✓
1

2
tr
⇣
⌃wHk(xk

)
⌘

+ gk(xk
, u
⇤
k
)

◆
.

In this case, the expectation value is not required anymore, and the additional term in the

value function accounts for the noise that a↵ects the system.

Employing Taylor series expansion again to approximate the gradient of the value function up

to second-order derivatives, the linearized gradient of the value function is given by

@Jk+1(xk+1)

@x
k+1

⇡
@Jk+1

�
f(x

k
, u
⇤
k
)
�

@x
k+1

+
@

2
Jk+1

�
f(x

k
, u
⇤
k
)
�

@x
2
k+1

w
k

. (3.8)

With the approximations (3.5), (3.7), and (3.8) of the stochastic system, a minimum principle

can be applied to the considered stochastic system as described in the following.
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3.1.2 Minimum Principle

In case of the stochastic system (3.1), a necessary minimum condition to obtain the original

value function Jk(xk
) is to find the roots of the partial derivative with respect to u

k
of the term

to be minimized. This leads to

@gk(xk
, u
⇤
k
)

@u
k

+ E
wk


@Jk+1(xk+1)

@x
k+1

�
@f(x

k
, u
⇤
k
)

@u
k

= 0T
, (3.9)

when the chain rule is employed.

Definition 3.1 (Costate) The costate is defined as the gradient of the value function evalu-

ated at one specific point x
k
, that is,

p
T
k

:=
@Jk(xk

)

@x
k

. (3.10)

Therefore, p
k
2

n is a vector, not a function.

Notation. In the following, for an optimal sequence of state-feedback controls (u⇤0, . . . , u
⇤
N�1)

minimizing (3.3) for k = 0, . . . , N � 1, the corresponding state sequence, according to the state

propagation (3.7), is denoted by (x⇤0, . . . , x
⇤
N

).

Theorem 3.1 Employing the approximations (3.5), (3.7), and (3.8), a recursive calculation

of the costate along the optimal sequence of state-feedback controls and the corresponding state

sequence is given by

p
T
N

=
@gN(x⇤

N
)

@x
N

, (3.11)

p
T
k

=
@gk(x⇤k, u

⇤
k
)

@x
k

+ p
T
k+1

@f(x⇤
k
, u
⇤
k
)

@x
k

, k = N � 1, . . . , 0 . (3.12)

Proof. k = N :

p
T
N

=
@JN(x⇤

N
)

@x
N

=
@gN(x⇤

N
)

@x
N

according to Definition 3.1.

k 2 {N � 1, . . . , 0}: The dynamic programming equation (3.3) yields

p
T
k

=
@Jk(x⇤k)

@x
k

=
@gk(x⇤k, u

⇤
k
)

@x
k

+
@gk(x⇤k, u

⇤
k
)

@u
k

@µ
k
(x⇤

k
)

@x
k

+ E
wk


@Jk+1(xk+1)

@x
k+1

@f(x⇤
k
, u
⇤
k
)

@x
k

�

+ E
wk


@Jk+1(xk+1)

@x
k+1

@f(x⇤
k
, u
⇤
k
)

@u
k

@µ
k
(x⇤

k
)

@x
k

�
, (3.13)

where x
k+1 denotes the one-step prediction by means of the system function (3.1) starting

from the state x
⇤
k
. Employing the necessary minimum condition (3.9) for Jk(x⇤k), (3.13) can be
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rewritten as

@Jk(x⇤k)

@x
k

=
@gk(x⇤k, u

⇤
k
)

@x
k

+ E
wk


@Jk+1(xk+1)

@x
k+1

�
@f(x⇤

k
, u
⇤
k
)

@x
k

(3.14)

for k = N � 1, . . . , 0. Considering (3.10), (3.12), and (3.14), it remains to show that for a given

state x
⇤
k

the equality

E
wk

"
@Jk+1

�
f(x⇤

k
, u
⇤
k
) + w

k

�

@x
k+1

#
=

@Jk+1(x⇤k+1)

@x
k+1

(3.15)

is satisfied. Because of the assumptions of Theorem 3.1, the states x
k
, k = 1, . . . , N , are

calculated by means of (3.7). Taking the expectation value, (3.8) can be rewritten as (3.15)

and the proof of (3.12) is concluded. ⇤

Definition 3.2 (Stochastic Hamiltonian) To define a stochastic Hamilton function, the

influence of noise has to be incorporated. In case of system (3.1), this leads to the definition

Hk(xk
, p

k+1
, u

k
, w

k
) := gk(xk

, u
k
)+ p

T
k+1

�
f(x

k
, u

k
)+ w

k

�
(3.16)

for k = N � 1, . . . , 0.

Theorem 3.2 Along the sequence of optimal state-feedback controls and the corresponding state

sequence, the properties

@

@x
k

⇣
Hk(x

⇤
k
, p

k+1
, u
⇤
k
, w

k
)
⌘

= p
T
k

, (3.17)

@

@x
k

⇣
Hk(x

⇤
k
, p

k+1
, u
⇤
k
, w

k
)
⌘

=
@Jk(x⇤k)

@x
k

, (3.18)

@

@u
k

⇣
Hk(x

⇤
k
, p

k+1
, u
⇤
k
, w

k
)
⌘

= 0T (3.19)

hold for k = N � 1, . . . , 0.

Proof. Equation (3.17): Let k 2 {0, . . . , N � 1}. Then,

@Hk

@x
k

=
@gk(x⇤k, u

⇤
k
)

@x
k

+ p
T
k+1

@f(x⇤
k
, u
⇤
k
)

@x
k

= p
T
k

,

which proves (3.17).

Equation (3.18): follows immediately from (3.10) and (3.17).

Equation (3.19): Because of the approximation of the gradient of the value function by means

of Taylor series expansion given by (3.8) and the necessary minimum condition (3.9) for the

value function Jk(x⇤k), (3.15) holds. With property (3.15)

@Hk

@u
k

=
@gk(x⇤k, u

⇤
k
)

@u
k

+ p
T
k+1

@f(x⇤
k
, u
⇤
k
)

@u
k

=
@gk(x⇤k, u

⇤
k
)

@u
k

+
@Jk+1(x⇤k+1)

@x
k+1

@f(x⇤
k
, u
⇤
k
)

@u
k

(3.20)

holds, which is equivalent to (3.9), and, therefore, concludes the proof. ⇤
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Corollary 3.1 (Stochastic Minimum Principle) With the assumptions of Theorem 3.1, a nec-

essary minimum condition for the considered stochastic system along the optimal control sequence

and the corresponding state sequence is given by (3.19), which can be evaluated by means of the

stochastic Hamiltonian.

Theorem 3.3 The Hesse matrix in (3.5) can be recursively calculated as follows, where the

arguments of the functions are omitted to simplify the readability.

HN =
@

2
gN

@x
2
N

Hk =
@

2
Hk

@x
2
k

+

✓
@f

@x
k

◆T

Hk+1

@f

@x
k

�

"✓
@f

@x
k

◆T

Hk+1

✓
@f

@u
k

◆
+

@
2
Hk

@x
k
@u

k

#
·

"✓
@f

@u
k

◆T

Hk+1

@f

@u
k

+
@

2
Hk

@u
2
k

#�1

·

"
@

2
Hk

@u
k
@x

k

+

✓
@f

@u
k

◆T

Hk+1

@f

@x
k

#
(3.21)

for k = N � 1, . . . , 0, where Hk denotes the Hesse matrix of the value function, and Hk refers

to the Hamilton function.

Proof. k = N :

HN =
@

2
JN

@x
2
N

=
@

2
gN

@x
2
N

.

k 2 {N � 1, . . . , 0}: Because of (3.18), the Hessian Hk can be calculated by means of the

Hamiltonian along the optimal sequence of controls and the corresponding state sequence.

Considering the gradient of Hk as a function of x
k
, p

k+1
, and u

k

3, and assuming that Hk+1 has

already been computed, Hk is given as the second partial derivative of the Hamiltonian with

respect to x
k
, that is,

Hk =
@

2
Hk

@x
2
k

+
@

2
Hk

@x
k
@p

k+1

Hk+1

@f

@x
k

+

 
@

2
Hk

@x
k
@p

k+1

Hk+1

@f

@u
k

+
@

2
Hk

@x
k
@u

k

!
@µ

k

@x
k

(3.22)

with unknowns @
2
Hk

@xk@p
k+1

and
@µ

k
@xk

. If (3.17) and the costate recursion (3.12) are employed,

@
2
Hk

@x
k
@p

k+1

=

✓
@f

@x
k

◆T

(3.23)

is fulfilled. Since (3.19) is satisfied for all x
k
,

@

@x
k

 
@Hk(xk

, p
k+1

, u
⇤
k
, w

k
)

@u
k

!
= 0

holds, that is,

@
2
Hk

@u
k
@x

k

+
@

2
Hk

@u
k
@p

k+1

Hk+1

✓
@f

@x
k

+
@f

@u
k

@µ
k

@x
k

◆
+

@
2
Hk

@u
2
k

@µ
k

@x
k

= 0 ,

3 The noise term wk vanishes, due to the additivity and its independence.
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which leads to

@µ
k

@x
k

= �

 
@

2
Hk

@u
k
@p

k+1

Hk+1

@f

u
k

+
@

2
Hk

@u
2
k

!�1

·

 
@

2
Hk

@u
k
@x

k

+
@

2
Hk

@u
k
@p

k+1

Hk+1

@f

@x
k

!
, (3.24)

where @
2
Hk

@uk@p
k+1

is unknown. With

@Hk

@u
k

=
@gk

@u
k

+ p
T
k+1

@f

@u
k

,

it follows that
@

2
Hk

@u
k
@p

k+1

=

✓
@f

@u
k

◆T

. (3.25)

Insertion of (3.25) into (3.24), and subsequent insertion of (3.23) and (3.24) into (3.22) yields

proposition (3.21) and concludes the proof of Theorem 3.3. ⇤

3.1.3 Consideration of Higher-Order Derivatives in the Value Function Approximation

In principle, the consideration of higher-order derivatives in (3.8) is possible, if the existence

of an inverse mapping of @Jk+1

@xk+1
can be guaranteed to satisfy (3.15), which is indicated in the

following.

Dynamic Programming. In accordance with Theorem 2.2, the dynamic programming equa-

tion at time step k + 1 is given by

Jk+1(xk+1) = gk+1(xk+1, u
⇤
k+1) + E

wk+1

⇥
Jk+2(xk+2)

⇤
. (3.26)

The next step in the DP algorithm (Algorithm 1) is the computation of the value function for

the previous time step k, that is,

Jk(xk
) = gk(xk

, u
⇤
k
) + E

wk

⇥
Jk+1(xk+1)

⇤
, (3.27)

where the successor states x
k+1 are not exactly known anymore, but given by their probability

density functions. Therefore, the knowledge about the state x
k+1 has changed from time step

k + 1 to k. Because of that, a one-step prediction has to be performed. In general,

Jk+1(xk+1) 6= E
wk

[Jk+1(xk+1)]

arising from (3.26) and (3.27), even if the system function (3.1) is known.

Costate Calculation. Similar to the previous paragraph, the costate recursion is discussed in

the following. Reflecting the definition of the costate, that is,

p
T
k

=
@Jk(xk

)

@x
k
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for k = N, . . . , 0, the state realization of x
k

must be known to determine the costate vector. In

contrast to the consideration of the value function in (3.27), the gradient of the value function

is employed in (3.10), evaluated at a point x
k
. It is important to mention that the costate is a

deterministic value, not a random variable, and given by

p
T
k

=
@Jk(xk

)

@x
k

=
gk(xk

, u
⇤
k
)

@x
k

+ E
wk


@Jk+1(xk+1)

@x
k+1

�
@f(x

k
, u
⇤
k
)

@x
k

, (3.28)

where the minimum condition (3.9) has been exploited. In (3.28), the state x
k+1 = f(x

k
, u
⇤
k
) +

w
k

is not known anymore, but only given by its probability density function depending on the

probability density function of the noise term w
k
.

To show that the costate recursion according to Theorem 3.1 is valid, that is,

p
T
k

=
@gk(x⇤k, u

⇤
k
)

@x
k

+ p
T
k+1

@f(x⇤
k
, u
⇤
k
)

@x
k

,

it has to be proved that

@Jk+1(xk+1)

@x
k+1

@f(x⇤
k
, u
⇤
k
)

@x
k

= E
wk

"
@Jk+1

�
f(x⇤

k
, u
⇤
k
) + w

k

�

@x
k+1

#
@f(x⇤

k
, u
⇤
k
)

@x
k

,

which is equivalent to

@Jk+1(x⇤k+1)

@x
k+1

= E
wk

"
@Jk+1

�
f(x⇤

k
, u
⇤
k
) + w

k

�

@x
k+1

#
. (3.29)

The left-hand side of (3.29) describes the knowledge used at time step k+1, the right-hand side

the knowledge at time step k. In case of a deterministic system, where the transition density

can be interpreted as a Dirac function, (3.29) always holds. In case of stochastic systems,

a deterministic approximation of the stochastic system function around the optimal control

sequence and the corresponding states is desired, that is, a system function with

f̃(x⇤
k
, u
⇤
k
) ⇡ f(x⇤

k
, u
⇤
k
) + w

k
, (3.30)

such that (3.29) holds. Taylor series expansion of the gradient of the value function is one

way to obtain this result. According to Appendix A.2, the multi-dimensional Taylor series

expansion of the gradient of the value function for additive noise in the system function (3.1)

is given by
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where the ⌦-operator has been employed. The ⌦-operator is introduced in Appendix A.1.

Removing the first three terms from the summation, the gradient of the value function is given
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Exploiting the properties of the ⌦-operator, the third term of (3.31) can be written as
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Therefore, the expectation value of the gradient can be rewritten as
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since the second-order derivatives vanish, due to the zero-mean of the noise term. The term of

the third-order derivatives of (3.32) can be simplified by means of

1

2
E
wk

"
@

3
Jk+1

�
f(x⇤

k
, u
⇤
k
)
�

@x
3
k+1

⌦ (w
k
wT

k
)

#
=

1

2

 
@

3
Jk+1

�
f(x⇤

k
, u
⇤
k
)
�

@x
3
k+1

⌦⌃w

!
,

where ⌃w denotes the covariance matrix of the noise term w
k
.

To fulfill (3.29), the condition
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must be satisfied for the Taylor series expansion of the gradient of the value function given

by (3.32). Then, the function f̃ in (3.30) can be defined as
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where
h

@Jk+1

@xk+1

i�1

denotes the inverse mapping of the gradient. If the Taylor series expansion of

the gradient of the value function is truncated after the second-order derivative, the function
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f̃ is given by the deterministic function
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Since the existence of the inverse mapping
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cannot be guaranteed in general, the simplified version (3.34) has been employed throughout

this thesis. Even in case of the consideration of third-order derivatives, the mentioned problems

arise.

3.1.4 Two-Point Boundary-Value Problem

Definition 3.3 (Two-point boundary-value problem) When ordinary di↵erential equa-

tions are required to satisfy boundary conditions at more than one value of the independent

variable, the resulting problem is called a multi-point boundary-value problem. In the special

case of two boundary conditions, the problem is called two-point boundary-value problem (TP-

BVP). The most common case is, where boundary conditions are supposed to be satisfied at

two points [PTVF02].

Remark 3.2 The distinction between initial value problems and TPBVPs is that in the first

case, it is possible to start an acceptable solution at its beginning (initial values) and just march

it along by numerical integration to its end (final values). In case of a TPBVP, the boundary

conditions at the starting point do not define a unique solution to start with. An arbitrary choice

among these solutions, satisfying these incomplete starting boundary conditions, is almost

certain not to satisfy the second boundary condition [PTVF02].

Formulation

When assuming that the sequence of controls (u⇤0, . . . , u
⇤
N�1) is known, the corresponding states

can be calculated by means of (3.7). After that, the corresponding costate sequence (p
N

, . . . , p
0
)

is obtained by means of (3.11) and (3.12), starting from the final state x
N

of the system iteration.

Thus, the knowledge of the u
⇤
k
-sequence is su�cient to obtain the remaining information.

Remark 3.3 Since the only unknowns in the considered discrete-time case are the values

x
N

and p
0
, which can be determined by means of the state iteration (3.7) and the costate

recursion (3.12), respectively, this problem is a two-point boundary-value problem.4

The boundary conditions are given by condition (3.11) and the costate p
0
. The control variable

u
⇤
k

is determined through the knowledge of x
k

and p
k+1

by means of the necessary minimum

4 The sequence of optimal controls is assumed to be known.
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condition (3.19). Therefore, for given values x
k

and p
k+1

, (3.19) and the state iteration yield a

terminal state x
N

depending on the costate p
0
. Hence, the initialization of the costate recursion

is a function of the costate p
0

for unknown values u
⇤
0, . . . , u

⇤
N�1. That is,

@JN(x
N

)

@x
N

=
@JN

�
x

N
(p

0
)
�

@x
N

implicitly depends on the value p
0
.

Solution

To solve the two point-boundary value problem, the necessary minimum condition (3.19)

is solved simultaneously for all time steps of the entire decision-making horizon as follows.

Introducing an augmented vector

U
⇤ :=

h
(u⇤0)

T
· · ·

�
u
⇤
N�1

�T
iT

(3.35)

of the unknown optimal controls u
⇤
k
, k = 0, . . . , N � 1, the optimal state-feedback control

for the current state x
⇤
0 := x̂0 is given by u

⇤
0. Employing (3.35), the necessary minimum

conditions (3.19) for all time steps of the entire decision-making horizon can be rewritten by

means of the nonlinear equation system

F (U⇤) :=

2

66666664

⇣
@

@u0
H0(x⇤0, p1

, u
⇤
0, w0)

⌘T

⇣
@

@u1
H1(x⇤1, p2

, u
⇤
1, w1)

⌘T

...⇣
@

@uN�1
HN�1(x⇤N�1, pN

, u
⇤
N�1, wN�1)

⌘T

3

77777775

= 0 (3.36)

with N nonlinear equations for the N unknown optimal controls u
⇤
0, . . . , u

⇤
N�1. The nonlin-

ear equation system (3.36) is numerically solvable. The employed method is described in

Section 3.2.2

Remark 3.4 On the one hand, the employment of the proposed approximations of the value

function and its gradient in the minimization procedure yields exactly the same result as treating

a deterministic problem in case of the considered optimal control problem. Therefore, the noise

term in (3.1) could have been neglected from the beginning. The reason is that the expectation

value of the approximated gradient, which is employed in the costate recursion (Theorem 3.1)

and the necessary minimum condition (3.19), equals the deterministic one. On the other hand,

the proposed method is more general than the consideration of a deterministic system, since

the noise vanishes during the approximation process and is not neglected from the beginning.

Therefore, extensions are possible in principle, for example by using higher-order terms in the

approximation of the gradient. In this case, Section 3.1.3 has to be considered to guarantee the

validity. When only an estimate of the minimal expected cost-to-go is desired, the di↵erence

between a deterministic and a stochastic consideration of the problem is still given by the

additional terms in (3.5).

29



Chapter 3. New Approach to Optimal Control of Nonlinear Noise-A↵ected Systems

3.1.5 Employment of Prior Knowledge

Up to this point, a sequence of state-feedback controls has been determined, which satisfies

the necessary minimum condition (3.19) for k = 0, . . . , N � 1 in case of a value function

approximated by means of (3.5). In case of value function approximation by means of Taylor

series expansion up to second-order derivatives, that control sequence coincides with the control

sequence, which would have been obtained, if just a deterministic system

x
k+1 = f(x

k
, u

k
)

had been considered. Depending on the system properties and the strength of the noise influ-

ence, this approximation is more or less suitable. However, the sequence of controls resulting

from the solution of (3.36) can be regarded as an approximation of the true optimal control

sequence for the original stochastic system (3.1). This knowledge is exploited in the following

to derive an improved solution to the original problem.

A promising approach to improve this approximate solution is the search around the sequence

of successor states of the initial value x̂0, which are obtained by the employment of the recently

determined control sequence solving (3.36). Going back to the original system function (3.1),

a restricted region of the state space has to be found, which covers possible successor states of

x̂0.

To obtain such a restriction of the state space, that is, an area of interest, the means and

covariances of the successor states of x̂0 are employed, where the control sequence for the N -

step horizon from the solution of the nonlinear equation system (3.36) is applied. According

to Section 2.2, in general, this computation cannot be solved analytically. Around the mean

value x
k
, a symmetric set Pk of p + 1 points is heuristically determined. The set Pk depends

on the covariance Cx

k
of the random variable x

k
through a function s, that is,

Pk := {x
k
, x

k
± s(Cx

k
, i), i = 1, . . . , p} . (3.37)

Depending on the uncertainty of the random variable x
k
, the sets Pk, k = 0, . . . , N , heuristically

discretize the state space around the mean values x
k
. Therefore, the spread of this region

depends on the uncertainty of the state xk for a k-step prediction. Within the range of the

sets Pk, k = 0, . . . , N , the value function is interpolated by means of piecewisely defined cubic

splines, such that stochastic dynamic programming can be applied to treat the continuous-

valued optimal control problem approximately.

3.1.6 Accuracy of the Spline Interpolation

Remark 3.5 To derive error bounds for the interpolating spline of the value function, the

following part is restricted to the scalar case.
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Review: Cubic splines

Definition 3.4 (Cubic spline interpolant) In the scalar case, a cubic spline inter-

polant is a piecewise polynomial function S : [a, b] ! consisting of cubic polynomial

pieces Si : [�i, �i+1] ! , where a = �0 < �1 < · · · < �N = b is a partition of the

interval [a, b]. That is,

Si(x) = ai(x� �i)
3 + bi(x� �i)

2 + ci(x� �i) + di

and

Si(x) ⇡ f(x)

for x 2 [�i�1, �i], i = 1, . . . , N , where f denotes the function to be approximated. The

given N +1 points �i are called knots. The parameters ai, bi, ci, di, i = 0, . . . , N , are

chosen, such that the polynomial pieces Si of the interpolant S satisfy

Si(�i) = f(�i), i = 0, . . . , N (3.38)

Si(�i+1) = f(�i+1), i = 0, . . . , N � 1 (3.39)

d

dx
Si�1(�i) =

d

dx
Si(�i), i = 1, . . . , N � 1 (3.40)

d2

dx2
Si�1(�i) =

d2

dx2
Si(�i), i = 1, . . . , N � 1 . (3.41)

Furthermore, a possible boundary condition is given by

d

dx
S0(�0) =

d

dx
f(�0)

d

dx
SN(�N) =

d

dx
f(�N) ,

which define the slopes at the end of the interval [a, b], [dB78].5 The extension to

higher dimensions is given in Appendix E.1.

According to (3.38)–(3.41), a cubic spline is continuous in the function value, the first

derivative, and the second derivative at the knots and within the subintervals [�i, �i+1], i =

0, . . . , N . A scalar example for a piecewise cubic interpolating function is given in Fig-

ure 3.1. A possibly high-degree function is piecewisely approximated by means of low-

degree polynomials, that is the function f(x), where only the knots and the corresponding

function values are known.

In accordance with [Ker71], an error bound for the piecewise approximation Sf 2 C
2[a, b] of

a function f 2 C
4 by means of cubic splines in an interval [a, b], which is partitioned into

�0 = a < . . . < �N = b, is given by

kSf � fk1 2 O(h4), h ! 0 , (3.42)

5 Further existing possible boundary conditions are not mentioned here, since they are not

employed in this thesis.
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Figure 3.1: Example for an interpolating function, which is piecewisely defined by means of cubic splines. The

interpolating function f(x) is twice di↵erentiable within the whole definition interval and coincides with the true,

but possibly unknown, function at all knots.

where

h := max
j

(�j+1 � �j) .

A definition of the 1-norm is given in Appendix A.4.

In [Hal73], a more general bound for f 2 C
m

, m = 2, 3, 4 is provided, such that

k(Sf � f)(r)
k1  "mrkf

(m)
k1h

m�r + Km�r

�
21�j

� 21�N+j
�

h 2 O(h2�r + h
m�r) (3.43)

for h ! 0 and �j  x  �j+1. For r = 0, 1, 2, the values "mr are given in Table 3.1.

Table 3.1: Values for "mr for the general error bound of the spline approximation.

"mr r = 0 r = 1 r = 2

m = 2 9
8 4 10

m = 3 71
216

31
27 5

m = 4 5
384

9+
p

3
216 5

Moreover, with

��j := �j+1 � �j

the remaining parameters are given by Table 3.2.

Table 3.2: Remaining parameters for the general error bound of the spline approximation.

�0 = ��j

4 �1 = 1 �2 = 6
��j

K2 = 5
2kf

(2)
k1 + R K3 = kf

(3)
k1 h + R

2 K4 = 7
24kf

(4)
k1 h

2 + R

2

The last parameter R depends on the boundaries of the approximation interval and is given by

R = max
n
kf

(2)(�0)� S
(2)
f

(�0)k, kf
(2)(�N)� S

(2)
f

(�N)k
o

.
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An error bound for the approximation of the value function

Jk(xk) = gk(xk, u
⇤
k
) + E

wk

[Jk+1(xk+1)]

by means of a piecewisely defined cubic spline J
spline

k
, to be employed in the proposed algorithm,

is derived in the following. Therefore, the norm
���Jk � J

spline

k

���
1

is considered.

According to Table 3.2, the norm

kJ
(2)
k
k1

of the value function is required to compute an error bound for the accuracy of the interpolating

spline. Since

Jk(xk) = gk(xk, u
⇤
k
) + E

wk

[Jk+1(xk+1)] ,

the problem of the treatment of the expectation value has to be solved. With

Jk+1(xk+1) � 0

it follows that

E
wk

[Jk+1(xk+1)] � 0 ,

because the expectation value can be regarded as a convolution with the noise density Pw, which

is the Gauss function in the considered case. Several important properties of the convolution

operator are mentioned in the following part.

Properties of the Convolution Operator

One way to treat the expectation value is, to show that in the considered case the convolution

⇤ operator can be employed to derive an upper bound of the L
1-norm of the original function

f according to

kf ⇤ Pw
k1  kfk1 , (3.44)

where Pw is a probability density function. In this case, an upper bound of the norm of the

expectation value is given by
����E

wk

[Jk+1(xk+1)]

����
1

= kJk+1(xk+1) ⇤ Pw
k1  kJk+1(xk+1)k1 .

Theorem 3.4 For f 2 L
p and g 2 L

1, p � 1, the convolution f ⇤ g exists and

kf ⇤ gkp  kgk1kfkp (3.45)

is satisfied.

Proof. The proof is given in [Aub00] and [Hol70]. For the definition of the L
p spaces it is

referred to Appendix A.4. ⇤
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Theorem 3.5 For f 2 L
1[a, b], Pw

2 L
1( ) the inequality

kf ⇤ Pw
k1  kfk1

holds.

Proof. Let p = 1. Then, the functions Pw
2 L

1( ) and f 2 L
1[a, b] satisfy

kf ⇤ Pw
k1  kfk1kPw

k1 = kfk1 , (3.46)

because of (3.45) and

kPw
k1 =

Z
|Pw(x)| dx =

Z
Pw(x) dx = 1 ,

where the density property of Pw has been employed. ⇤

In the considered case, Pw is a Gaussian N = N (x; x, �
2
x
) with mean x and variance �

2
x
, and

E
wk

[f ] = f ⇤N

holds. Thus,

kfk1 � kf ⇤Nk1 ,

and the desired upper bound is obtained.

Remark 3.6 For f 2 C
0 with compact support,

f ⇤ Pw
2 C

1
,

which reveals the smoothing property of a probability density [Aub00].

Error Bound for the Spline Approximation

In the following, the value function Jk+1 is assumed to be already approximated by means of

a piecewisely defined cubic spline J
spline

k+1 . The value function approximation J
spline

k+1 is at least

twice continuously di↵erentiable because of its construction, that is Jk+1 2 C
k
, k � 2.

However, the objective of the following part is to derive an upper bound for kJ (2)
k
k1 to

apply (3.43), where the property (3.44) of the convolution operator is exploited.

Convention. The approximation error at time step k + 1 is ignored at this point to derive a

one-step error bound for the approximation of Jk at time step k. Therefore, the function J
spline

k+1

is denoted by Jk+1 in the following.

With (3.46) ����E
wk

[Jk+1(xk+1)]

����
1
 kJk+1(xk+1)k1 (3.47)
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holds. Furthermore, the desired second derivative of the value function is given by
����

@

@xk

✓
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2
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⇤
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2
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1

.

Since the expectation operator can be regarded as the convolution of two functions, which is

just an integration, it is possible to exchange the order of di↵erentiation and the expectation.

Then,
����
@

2
gk

@x
2
k

+
@

2

@x
2
k

✓
E
wk
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2
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+ E
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
@

2
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2
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2
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2
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+
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2
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2
k
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�����
1

,

due to the fact that gk = gk(xk, u
⇤
k
) is independent of wk. With (3.47) it follows that

����
@
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1

(3.47)
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2
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1
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2
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2
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@xk+1

@f
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2
gk
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2
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+
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2
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2
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@f

@xk
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f

@x
2
k
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,

and the desired upper bound for kJ (2)
k
k1 is obtained. With this result, an upper bound for the

spline interpolation is given, when applying (3.43). In Appendix E.2, this bound is computed

for a concrete example.

Remark 3.7 Similar to the previous part, where the interpolation is performed over the x-

variable, an interpolation with respect to the u-variable of the cost function V is performed by

the proposed algorithm.6 This interpolation scheme is employed, such that the optimal control

problem is treated continuously in the control variable. In this case, the approximation error

of the derivative

k(V spline

k
� Vk)

(1)
k1

is important, since the derivative of V
spline

k
is employed to find the desired minimum of the cost

function. According to [Hal73], an approximate error bound is given by

k(V spline

k
� Vk)

(1)
k1 2 O(h) , h ! 0 ,

that is, the error decreases at least linearly for h ! 0.

3.2 Practical Methods

This section deals with methods to put the theoretical results into practice. Two alternative

methods to formulate the two-point boundary value problem are described in Section 3.2.1. In

6 The cost function is the non-minimized value function.
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Section 3.2.2, a possible approach to solve the nonlinear equation system (3.36) is introduced.

In Section 3.2.3, an approximate method is described to determine the desired restriction of

the state space mentioned in Section 3.1.5. The determination of the grid points, which are

employed to perform approximate dynamic programming, is motivated in Section 3.2.4. An

approximation scheme of the value function on this grid to treat the continuous-valued optimal

control problem is discussed in Section 3.2.5 in detail.

3.2.1 Formulation of the Two-Point Boundary-Value Problem

Alternative approaches to formulate the TPBVP as described in Section 3.1.4 are given by the

shooting method or the direct method to be briefly introduced in the following.

Shooting Method

According to[SB02], the shooting method starts the iteration from the given initial state x̂0 and

an assumed costate p̃
0

and calculates x
N

and p̃
N

. That is, the second boundary condition (3.11)

is a function of p̃
0
. In most cases,

p̃
T
N
�

@JN

⇣
x

N
(p̃

0
)
⌘

@x
N

6= 0 .

This means, the boundary condition (3.11) is not fulfilled. Then, the initial vector p̃
0
is modified

to obtain the boundary condition p̃
T
N

=
@JN (xN (p̃

0
))

@xN
. The TPBVP is rewritten as a nonlinear

equation system, which needs not to coincide with (3.36).

Since the optimal state-feedback control u
⇤
k

is a function of the state and the costate, it is

determined by the knowledge of x
k

and p̃
k+1

.

Direct Method

Instead of an initial guess of the gradient of the value function, in the direct method initially

a policy ⇡̃ = (ũ0, . . . , ũN�1) is assumed, and the corresponding state sequence (x̃0, . . . , x̃N�1) is

computed. After that, the costate sequence (p̃
N�1

, . . . , p̃
0
) is calculated starting from

p̃
T
N

=
@JN(x̃

N
)

@x
N

.

For each k 2 {0, . . . , N � 1}, the necessary minimum condition

@H̃k(x̃k
, p̃

k+1
, ũ

k
, w

k
)

@u
k

= 0T

is evaluated. If this condition does not hold, the assumed policy ⇡̃ = (ũ0, . . . , ũN�1) has to be

modified.
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3.2.2 Solution of the Nonlinear Equation System

The nonlinear equation system (3.36) is in general di�cult to solve, since most methods require

an initial value ŷ
0

su�ciently close to the solution, such that an iteration process

y
n+1

= �(y
n
) (3.48)

converges. This means, ŷ
0

lies in the domain of attraction of the iteration process, which

converges to the fixed-point

y = �(y)

of the function �. In case of the famous Newton iteration, a necessary minimum condition

is evaluated. Linearization of the function � yields the iteration scheme (3.48). To prove the

convergence of the Newton iteration, Banach’s fixed-point theorem can be employed. Since

only a necessary minimum condition is evaluated, it is possible that the provided solution only

reveals a local minimum, which is one further basic problem in nonlinear minimization.

To solve the two-point boundary-value problem, that is, equation system (3.36), a continuation

process is implemented in this thesis, which is discussed in more detail in the following.

Continuation Process

The advantage of a continuation method, which is introduced in more detail in Appendix B,

is that it is exhaustive under some conditions. That is, it is not necessary to know a starting

value y
0

close to the solution of the iteration (3.48). Furthermore, all solutions can be found.

Moreover, continuation methods are well-suited for higher-dimensional problems with respect

to conditioning [RD83].

With the employment of a continuation process, the nonlinear equation system (3.36) is em-

bedded into a parameterized family of equation systems

F (U⇤(�)) :=

2

66666664

⇣
@

@u0
H0(x⇤0, p1

(�), u⇤0(�), w0)
⌘T

⇣
@

@u1
H1(x⇤1(�), p

2
(�), u⇤1(�), w1)

⌘T

...⇣
@

@uN�1
HN�1(x⇤N�1(�), p

N
(�), u⇤

N�1(�), w
N�1)

⌘T

3

77777775

!
= 0 , � 2 [0, 1] , (3.49)

such that for the parameter � = 0 the solution to an easy problem is obtained, and for � = 1

the original problem is described. Employing a discrete curve follower, the easy problem is

being transformed into the original problem with an increasing parameter �i, i = 0, . . . , t,

where 0 = �0  �i  �t = 1. During this process, the solution to the problem is being traced.

This means, that the solution for the previous value �i�1 serves as an initial guess to calculate

the solution for �i. Alternatively, a continuous curve follower can be employed as explained in

Appendix B.
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Definition 3.5 (Homotopy) For � 2 [0, 1], the continuously parameterized family of map-

pings f(x, �) is called homotopy between the functions f(x, 0) and f(x, 1).

The nonlinear equation system (3.49) can be solved, for example, by means of a Newton it-

eration, where the initial guess of each step of the transformation process is assumed to be

su�ciently close to the solution for problem depending on the current parameter �i. The de-

sired solution is obtained for �t = 1. Instead of applying an iterative minimization method

directly to (3.36) and su↵ering from poor initial values, this homotopy approach yields good

starting values at each step, if the function F is su�ciently smooth for increasing �i. There-

fore, it is possible to obtain the desired solution to the considered nonlinear system (3.36)

numerically.

In the considered case, the stochastic nonlinear system (3.1) is parameterized, such that the

easy problem is to find the optimal control for a linear system. This is due to the existence

of optimal linear controllers for linear systems in case of a quadratic cost function, which is

additive over time. These linear quadratic controllers (LQ controllers) provide optimal state-

feedback controls by solving the discrete-time Riccati equation recursively. The derivation of

such an LQ controller is given in Appendix C.

To obtain the desired linear system for � = 0, the system description (3.1) can be changed into

x
k+1 = � f(x

k
, u

k
) + (1� �) l(x

k
, u

k
) + w

k
(3.50)

with a linear function l, such that the problem for � = 0 consists in solving the LQ control

problem. The original nonlinear system (3.1) is obtained for � = 1.

Example 3.1: Homotopy between a linear function and a nonlinear function

In Figure 3.2, a scalar function is displayed, which depends on a homotopy parameter �.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x!

f
(x

,�
)
!

� = 0
� = 0.25
� = 0.5
� = 0.75
� = 1

Figure 3.2: f(x, �) = �
`
sin

`
3 ⇡
4 x

´´
+ (1� �) x.

With increasing �, the function f(x, �) changes from the linear function

l(x) = f(x, 0) = x
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to the nonlinear function

f(x) = f(x, 1) = sin

✓
3 ⇡

4
x

◆
.

⌅

Candidates for the desired optimal state-feedback controls u
⇤
k
, k = 0, . . . , N�1, for the nonlinear

system are determined as summarized in Algorithm 2, where the finite-horizon window to apply

model predictive control is set to N steps. The current state x̂
k

is directly accessible and is

employed as the new initial value. The continuation process initially solves the LQ control

problem and yields the solution U
⇤(�0) = U

⇤(0). The solution of step i�1 serves an initial guess

U init(�i) for a Newton method calculating U
⇤(�i) for increasing �i to satisfy condition (3.49).

The desired state-feedback control u
⇤
k

is given as the first entry of U
⇤(�t) = U

⇤(1).

Algorithm 2 MPC: Application of the minimum principle

1: procedure MPC initial solution

2: N := end of finite horizon window . initialization

3: for k = 0 to 1 do

4: x̂0 := x̂
k

5: U
⇤(0) = LQC(x̂0, N) . initialization continuation process (LQ control)

6: for i = 1 to t do . for increasing �

7: U init(�i) = U
⇤(�i�1) . old solution as starting value

8: U
⇤(�i) = Newton(U init(�i)) . calculation of U

⇤ via Newton method

9: end for

10: u
⇤
k

:= u
⇤
0(1) . optimal state-feedback control for current state

11: x
k+1 = f(x̂

k
, u
⇤
k
) + w

k
. time update

12: end for

13: end procedure

Remark 3.8 Reapplication of Algorithm 2 after each time step yields a closed-loop solution

to the considered optimal control problem.

The Newton iteration is described in Algorithm 3 and works as follows. If

kF (U init(�i))k > " > 0 ,

truncated Taylor series expansion around the initializing value U init(�i) yields the condition

F (U init(�i)) +
@F (U init (�i))

@U
·�U init(�i) = 0 .

Approximating the Jacobian @F (U init (�i))
@U

, for example, by means of finite di↵erences as proposed

in [SB02], the desired update of the vector U init(�i) is given as

Uupdate(�i) = U init(�i) + �U init(�i) ,
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where �U init(�i) solves

@F (U init (�i))

@U
�U init(�i) = �F (U init)(�i) .

This equation system may be solved by means of the QR-decomposition [SB02]. If

kF (Uupdate(�i))k  " ,

the vector U
⇤(�i) := Uupdate(�i) is returned. Otherwise, iteration yields the desired solution

U
⇤(�i). Implementation details are given in Appendix F.

Algorithm 3 General Newton method

1: function Newton(U init(�i))

2: tolF := " > 0 . initialization: threshold

3: choose MaxIt . max. number of iterations

4: U0 := U init(�i)

5: for j = 0 to MaxIt do

6: if kF (U
j
)k  " then . solution su�ciently good?

7: U
⇤(�i) := U

j

8: return(U⇤(�i)) . yes: return solution

9: else

10: JacApprox = FiniteDifferences(F (U
j
)) . no: approximation of Jacobian

11: U
j
= solve(JacApprox ·�U

j
= �F (U

j
)) . solve linear equation system

12: U
j+1 = U

j
+ �U

j
. update of starting value for iteration

13: end if

14: end for

15: print(‘not converged’) . Newton method not converged

16: U
⇤(�i) := U

MaxIt

17: return(U⇤(�i))

18: end function

Remark 3.9 The initial value to the numerical algorithm is a good choice, since the initial

guess is the assumed optimal solution of the previous step i� 1 of the homotopy between the

linear and the nonlinear system. In case of su�ciently small steps of the discrete curve follower

and a su�ciently smooth value function, the Newton iteration yields the correct solution, since

the initial guess is close to the solution.

Remark 3.10 The control sequence (u⇤0, . . . , u
⇤
N�1), which solves the nonlinear equation sys-

tem (3.36), is assumed to be a suitable solution to the optimal control problem, if the value

function is approximated by means of (3.5). This assumption is based on the uniqueness of the

solution to the LQ control problem and the employment of the continuation process. Never-

theless, only a necessary condition is evaluated. Hence, there is no guarantee to obtain a global

minimum in the unrestricted case, for example without restriction to convex sets.

40



3.2. Practical Methods

3.2.3 Restriction of the State Space by Means of the Unscented Transformation

Discretization of the state and control spaces is a common approach to apply dynamic pro-

gramming to technical applications, which usually have to treat continuous-valued problems. If

the state space can be restricted in any way, for example, there is knowledge about improbable

or impossible system states, the grid to be defined can be concentrated in the restricted part

of the state space. Thus, the quality of the solutions of the DP algorithm increases.

Notation. In the following, the control variables solving the nonlinear equation system (3.36),

will be denoted by û0, . . . , ûN�1, since the considered problem changes. That is, in contrast to

the value function approximation (3.5) and the state propagation (3.7) to evaluate the value

function, the original system function (3.1) and the original value function (3.3) are considered.

Therefore, that control sequence is still known, but not assumed to be optimal anymore for the

currently treated problems.

The sequence (û0, . . . , ûN�1) is employed to restrict the state space. To determine this restric-

tion according to (3.37), the sequences of means and covariances of the successor states x
k+1 of

the initial state x̂0 are required. For an approximate calculation of these values, the unscented

transformation and the known sequence (û0, . . . , ûN�1) are employed.

Review: Basic idea of the unscented transformation

According to [JU96], the unscented transformation is one method to obtain estimates of

the mean and the covariance of a nonlinearly transformed random variable

y = f(x) . (3.51)

Instead of approximating the nonlinear function f , which is for example done by the

extended Kalman filter, the density of the random variable x is approximated with a fixed

number of few samples. These samples are individually transformed by means of the

original function f of (3.51) as shown in Figure 3.3. Then, the mean and the covariance

of the random variable y can be determined approximately.

f(X )

X
Y

Figure 3.3: Principle of the unscented transformation. A specific set X of sampling points is nonlinearly

transformed. The mean and the covariance of the resulting discrete distribution of the points approximate the

corresponding values of the nonlinearly transformed random variable.
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The UT employs a set X of sigma points Xi and corresponding weights !i, i = 0, . . . , p,

according to

X := {X0, . . . ,Xp, !0, . . . ,!p} .

The sigma points and the weights are selected, such that X captures mean and covari-

ance of a random variable x
k
. Then, the estimate of the mean of y is accurate up to

second order. The covariance of the nonlinearly transformed random variable x
k

can be

determined approximately with first-order accuracy.

Remark 3.11 Accuracy of order k means that the Taylor series expansion of the nonlinear

function f around the desired value is correct up to the k-th order term.

A more detailed introduction to the unscented transformation is given in Appendix D.

In the considered case, equation (3.51) is given by

x
k+1 = f(x

k
, û

k
) + w

k
, k = 0, . . . , N � 1 ,

that is the system equation (3.1), where the control û
k

is applied. The incorporation of the

noise term is possible and treated in [XZC06].

To capture higher-order moments of the distribution of the random variable x
k

and to improve

the accuracy of the UT, an additional parameter  is introduced in [JU02], which ensures higher

accuracy in the calculations. The weights and the p = 2n + 1 sigma points X (k)
i

around the

mean value x
k
2 Pk are set to

!0 =


n + 
(3.52)

!j =
1

2(n + )
, j = 1, . . . , p (3.53)

X
(k)
0 = x

k

X
(k)
i

= x
k
�

✓q
(n + )Cx

k

◆

i

, i = 1, . . . , n

X
(k)
i

= x
k
+

✓q
(n + )Cx

k

◆

i

, i = n + 1, . . . , 2n + 1 ,

where x
k
2

n, and
⇣p

(n + )Cx

k

⌘

i

denotes the i-th column of a matrix square root7 of

(n + )Cx

k
.

In case of a Gaussian probability density function of the random variable x
k
, the parameter 

is optimal for  = 3� n [JU02]. Then, the weights !i for a scalar system are given by

!0 =
2

3

!1 =
1

6

!2 =
1

6
.

7 For n � 2, there exist infinitely many matrix square roots.
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For  = 1
2 , all weights !i are equal resulting from (3.52) and (3.53). Therefore, in the considered

case,  is set to 3 � n for the first two prediction steps. Since the initial value x̂0 is known,

its distribution is given by a Dirac function, and all sigma points coincide with x̂0. Therefore,

the first successor state x1 possesses a Gaussian density function, which depends on the noise

covariance ⌃w. With increasing prediction horizon, the density functions of the successor states

are not Gaussian in general, and the corresponding probability density functions become more

di�cult and possibly multimodal. Therefore, the parameter  is chosen as a kind of homotopy

parameter8 according to

 =

8
<

:
3� n for k = 1, 2 ,

3� n�
|3�n|

N
k + 1

2 for k > 2 .

for the k-th prediction step of an N -step horizon.  approaches 1
2 , such that finally all sigma

points X (N)
i

are equally weighted to capture more information of the distribution in regions that

are not close to the mean value. This choice is a contribution to the possible multi modality of

the unknown densities of the successor states x
k+1, k � 2.

3.2.4 Determination of the Grid Points for the Value Function Interpolation

After the determination of the set Pk as described in (3.37), a modified set

G
init

k
=
n

x
(0)
k

, . . . , x
(p)
k

o
(3.54)

is determined as follows to incorporate important properties of the considered system. For

su�ciently large k, one of the grid points is substituted by the desired target point c given by

the value function in the DP algorithm, that is Algorithm 1.9 The grid point to be substituted

is the nearest neighbor of the target point. This modification assures exact consideration of

the desired terminal states. To keep the symmetry of the set of grid points, the symmetric

equivalents of the substituted grid point are exchanged, too.

Remark 3.12 It is important to note that the sets Ginit

k
cover the same parts of the state space

as the sets Pk, if no extremal point of Pk is replaced. Furthermore, the number of points does

not change. Based on simulations, the employment of the modified grid G
init

k
is assumed to

provide better results, since the desired terminal point is included explicitly as a knot of the

subsequent spline interpolation.

Example 3.2: Possible restriction of the state space

In Figure 3.4, a possible restriction of the state space is given for a scalar system and a five-step

horizon.

Around the estimates of the mean values of the successor states of the known initial value x̂0, the

state space is restricted depending on the estimated covariance of the successor states. ⌅
8 similar to Section 3.2.2
9 Depending on the concrete application, the first parameter k, for which the target point

is included, has to be chosen heuristically.

43



Chapter 3. New Approach to Optimal Control of Nonlinear Noise-A↵ected Systems
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Figure 3.4: Possible restriction of the state space. Around the predicted mean values of the successor states of

x̂0, the state space is restricted depending on the predicted covariances of the successor states.

3.2.5 Interpolation of the Value Function by Means of Piecewisely Defined Cubic Splines

In the following, the basic concept is discussed, how to improve the control sequence given

by the solution of the nonlinear equation system (3.36) by means of piecewise cubic spline

interpolation. Again, dynamic programming is the basis for the algorithm, which is performed

within the range of the sets Ginit

k
, k = 0, . . . , N .

Motivation to Employ Piecewisely Defined Cubic Splines

The motive for an interpolation is that the approximating function is simpler to compute

than the approximated function. The classical choice for an approximation scheme is a single

polynomial, sometimes of high degree, to approximate the function. The employment of a single

high-degree polynomial creates a global interpolant, that is, it applies to the entire interval.

The problem is that a change in one point in the approximation a↵ects the quality of the

approximation at all points, even those that are distant from the point of change.

To minimize this behavior, piecewisely defined polynomials of lower degree are used to approx-

imate the original function. The classical examples for such low-degree polynomials are linear,

quadratic, and cubic polynomials.

Piecewise polynomials, such as spline functions, are more flexible in following the variations

of a function and are also more local in their approximation. With increasing degree, the

interpolating functions become less local, that is, changes within one subinterval do not only

influence the adjacent subintervals but others, too [FM97].

In this thesis, piecewise interpolation by means of cubic splines is chosen. This approximation

scheme minimizes the oscillation behavior of the interpolant [dB78]. Since a common assump-

tion on the value function is the twice continuous di↵erentiability, the interpolating function
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should also possess these properties. Therefore, the piecewise interpolation requires at least

polynomials of degree three.

Application of the Spline Interpolation in the Dynamic Programming Algorithm

To apply dynamic programming with value function approximation, the first step is to interpo-

late the terminal cost (3.2), which is possible, since the terminal cost JN(x
N

) is independent of

the control variable. Thus, an analytic approximation of Jk+1(xk+1) in the range of Ginit

k+1, which

is defined in (3.54), is assumed to be given. An approximate analytic description of Jk(xk
) in

the range of Ginit

k
can be obtained by means of spline interpolation. After the determination of

the value function Jk(x
(i)
k

) at the grid points x
(i)
k

, the tuples
n⇣

x
(i)
k

, Jk(x
(i)
k

)
⌘op

i=0

are employed to provide an approximation J
spline

k
(x

k
) of the true function Jk(xk

) around x
k
,

where the spread depends on the covariance Cx

k
. Therefore, it remains to derive the values

Jk(x
(i)
k

) for all x
(i)
k
2 G

init

k
. The recursive calculation of an approximation of Jk(xk

) within the

dynamic programming algorithm is described in Algorithm 4, which employs the knowledge of

the control sequence (û0, . . . , ûN�1) for the current horizon window.

1. The algorithm is initialized with the spline interpolation of the terminal cost.

2. For x
(i)
k
2 G

init

k
the set U (i)

k
is determined, which contains all u

(i,j)
k

with

E
wk

[f(x(i)
k

, u
(i,j)
k

) + w
k
] = f(x(i)

k
, u

(i,j)
k

) = x
(j)
k+1

for fixed x
(i)
k

and all successor states x
(j)
k+1 2 G

init

k+1. This means, a set U (i)
k

of control variables

is desired mapping x
(i)
k
2 G

init

k
onto each element x

(j)
k+1 2 G

init

k+1 under f . A scalar example

is depicted in Figure 3.5.

x(i)
k

u(i,3)
k

u(i,2)
k

u(i,1)
k

x(1)
k+1

x(2)
k+1

x(3)
k+1

Figure 3.5: Scalar example: determination of the set U (i)
k .

3. The value Ewk
[Jk+1(x

(j)
k+1)] can be obtained in several ways. On the one hand, numerical

integration yields a correct solution. On the other hand, approximate solutions can be

employed to circumvent the computational expenses of numerical integration. Therefore,

a tradeo↵ between exactness and calculation time has to be found. One possible candidate
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Algorithm 4 Update of the state-feedback control

1: function value function interpolation(û0, . . . , ûN�1, G
init

0 , . . . ,G
init

N
)

2: J
spline

N
(x

k
) ⇡ spline (

n⇣
x

(i)
N

, gN(x(i)
N

)
⌘op

i=0
) . initialization

3: for k = N � 1 to 0 do . for the current horizon window

4: Jk+1 := J
spline

k+1

5: for i = 0 to p do . for all grid points

6: U
(i)
k

:= ;

7: for j = 0 to p do

8: U
(i)
k

=
n

u
(i,j)
k

: Ewk
[f(x(i)

k
, u

(i,j)
k

) + w
k
] = x

(j)
k+1

o
[ U

(i)
k

9: determine E
wk

[Jk+1(x
(j)
k+1)]

10: Vk(x
(i)
k

, u
(i,j)
k

) := gk(x
(i)
k

, u
(i,j)
k

) + E
wk

[Jk+1(x
(j)
k+1)] . cost function

11: end for

12: V
spline

k
(x(i)

k
, u

k
) := spline (

n⇣
u

(i,j)
k

, Vk(x
(i)
k

, u
(i,j)
k

)
⌘op

j=0
) . interp. cost function

13: Jk(x
(i)
k

) = min
uk

V
spline

k
(x(i)

k
, u

k
) . minimization

14: u
⇤
k

= arg min
uk

V
spline

k
(x(i)

k
, u

k
) . optimal state-feedback control

15: end for

16: J
spline

k
(x

k
) ⇡ spline (

n⇣
x

(i)
k

, Jk(x
(i)
k

)
⌘op

i=0
) . interp. value function

17: end for

18: return(u⇤0)

19: end function

for an approximate solution is the unscented transformation [JU96]. In Figure 3.6, the

calculation of the value Ewk
[Jk+1(x

(j)
k+1)] for one successor state is shown graphically.

4. Then, the cost function, that is, the expected cost-to-go from the current state to the

terminal state via one specific successor state, is determined by

Vk(x
(i)
k

, u
(i,j)
k

) = gk(x
(i)
k

, u
(i,j)
k

) + E
wk

[Jk+1(x
(j)
k+1)] .

In Figure 3.7, the corresponding scalar example is given. It is important to mention that

this cost is not minimized yet.

5. After the computation of the expected cost-to-go for all successor states of x
(i)
k

, spline

interpolation of Vk(x
(i)
k

, u
(i,j)
k

) with knots u
(i,j)
k

, j = 0, . . . , p, yields an analytic approxima-

tion V
spline

k
(x(i)

k
, u

k
) of the cost function in the range of the controls u

(i, · )
k

applied at x
(i)
k

.

The graphical equivalent for the scalar example is given in Figure 3.8.

6. Minimization of V
spline

k
(x(i)

k
, u

k
) with respect to u

k
yields the minimal expected cost-to-go

Jk(x
(i)
k

).

7. The optimal state-feedback control for the considered state x
(i)
k

is given by the minimizing

control variable of the cost function V
spline

k
(x(i)

k
, u

k
).

46



3.2. Practical Methods

x(i)
k

x(1)
k+1

x(2)
k+1

x(3)
k+1

Ewk [Jk+1(x
(3)
k+1)]

Figure 3.6: Scalar example: computation of Ewk [Jk+1(x
(3)
k+1)].

x(1)
k+1

x(2)
k+1

x(3)
k+1

x(i)
k

u(i,1)
k

u(i,2)
k

u(i,3)
k

Ewk [Jk+1(x
(1)
k+1)]

Ewk [Jk+1(x
(2)
k+1)]

Ewk [Jk+1(x
(3)
k+1)]

Figure 3.7: Scalar example: computation of the expected cost-to-go Vk(x(i)
k , u(i,1)

k ) = gk(x(i)
k , u(i,1)

k ) +

E
wk

[Jk+1(x
(1)
k+1)].

8. Finally, an approximate analytic description of Jk is given by interpolating Jk(x
(i)
k

) along

the knots x
(i)
k
2 G

init

k
, i = 0, . . . , p. In Figure 3.9, this last step is depicted for the scalar

example.

Remark 3.13 It is important to note that in Algorithm 4 the value function (3.3) is not

approximated by means of Taylor series expansion according to (3.5) anymore. The new ap-

proximation is based on the adaptive discretization of the state space according to (3.37), its

modification according to (3.54), and the interpolation of the cost with respect to the control

variable in line 12 of Algorithm 4, which yields a continuous-valued control problem to be

x(1)
k+1

x(2)
k+1

x(3)
k+1

x(i)
k

u(i,1)
k

Ewk [Jk+1(x
(1)
k+1)]

Ewk [Jk+1(x
(2)
k+1)]

Ewk [Jk+1(x
(3)
k+1)]

u(i,2)
k

u(i,3)
k

V spline
k (x(i)

k , uk)

Figure 3.8: Scalar example: interpolation of the cost function with respect to uk.
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x(2)
k

x(3)
k

x(1)
k

Jk(x(1)
k )

Jk(x(2)
k )

Jk(x(3)
k )

Jspline
k (xk)

Figure 3.9: Scalar example: interpolation of the value function with respect to xk.

solved. Furthermore, the spline interpolation along the knots x
(i)
k

in line 16 yields a continuous

approximation of the value function within the area of interest.

The resulting updated control vector u
⇤
0 for the current horizon window is expected to be closer

to the true optimal solution than û0 given by Algorithm 2. This assumption is based on the

fact that the sequence (û0, . . . , ûN�1) in the determination of the sets Pk and the influence of

noise according to Remark 3.13 are explicitly incorporated in the calculation of the updated

control.

In the following, several steps of Algorithm 4 will be discussed in more detail to motivate the

chosen solutions.

Calculation of Ewk
[Jk+1(x

(j)
k+1)]

In line 9 of Algorithm 4, the calculation of the expectation value Ewk
[Jk+1(x

(j)
k+1)] is required to

apply dynamic programming. Since the state x
k

is fixed in each calculation step of Algorithm 1,

the density function of the successor state x(j)
k+1 only depends on the probability density function

of the noise term in (3.1) as explained in the following.

Review: Probability density of the successor state

For a given system function

x
k+1 = f(x

k
, u

k
) + w

k
(3.55)

with probability density functions Px

k
, Pw

k
for x

k
, w

k
, respectively, the density Px

k+1 of

the successor state x
k+1 can be calculated as follows. Regarding (3.55), the conditional

density P(x
k+1|xk

, u
k
, w

k
) is given by

P(x
k+1|xk

, u
k
, w

k
) = �(x

k+1 � f(x
k
, u

k
)� w

k
) , (3.56)
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3.2. Practical Methods

where �( · ) denotes the Dirac function. Exploiting Bayes’ Law, the desired function Px

k+1

can be written as the marginalization

Px

k+1(xk+1) =

Z

m

Z

n

P(x
k+1|xk

, u
k
) Px,u

k
(x

k
, u

k
) dx

k
du

k

=

Z

m

Z

n

P(x
k+1|xk

, u
k
) Px

k
(x

k
|u

k
) Pu

k
(u

k
) dx

k
du

k
. (3.57)

Since x
k

and u
k

are independent random variables, equation (3.57) is simplified to

Px

k+1(xk+1) =

Z

m

Z

n

P(x
k+1|xk

, u
k
) Px

k
(x

k
) Pu

k
(u

k
) dx

k
du

k
,

where P(x
k+1|xk

, u
k
) is given by the marginalization

P(x
k+1|xk

, u
k
) =

Z

n

P(x
k+1, wk

|x
k
, u

k
) dw

k

=

Z

n

P(x
k+1|xk

, u
k
, w

k
) Pw

k
(w

k
) dw

k
, (3.58)

where again Bayes’ law has been applied. Insertion of (3.56) into (3.58) yields

P(x
k+1|xk

, u
k
) =

Z

n

�(x
k+1 � f(x

k
, u

k
)� w

k
) Pw

k
(w

k
) dw

k
.

Then, this equation can be simplified through the properties of the Dirac function, resulting

in

P(x
k+1|xk

, u
k
) = Pw

k
(x

k+1 � f(x
k
, u

k
)) .

Hence, the density of the successor state of a one-step prediction depends on the noise

density [HS05], since

Px

k+1(xk+1) =

Z

m

Z

n

Pw

k
(x

k+1 � f(x
k
, u

k
)) Px

k
(x

k
) Pu

k
(u

k
) dx

k
du

k
. (3.59)

In the considered case, the state is directly accessible, that is, the state is known with certainty.

Moreover, the control variable is treated as a deterministic variable. Therefore, the functions

Px

k
and Pu

k
in (3.59) can be replaced with Dirac functions, such that the integrals vanish.

According to line 9 of Algorithm 4, the DP algorithm employs a one-step prediction from the

state x
(i)
k

to the successor state x(j)
k+1 to determine the expected cost-to-go

Vk(x
(i)
k

, u
(i,j)
k

) = gk(x
(i)
k

, u
(i,j)
k

) + E
wk

[Jk+1(x
(j)
k+1)] .

Therefore, the value Ewk
[Jk+1(x

(j)
k+1)] is a nonlinear transformation of the random variable x(j)

k+1

by means of the function Jk+1, where the density of x(j)
k+1 is determined by the density of w

k
.
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Review: Nonlinear transformation of random variables — expectation

value

Let x be a random variable with a given probability density Px. Moreover, a nonlinear

transformation of x is given by

y = f(x) .

Then, the expected value of y is given by

E[y] =

Z

n

f(x) Px(x) dx .

The expectation value Ewk
[Jk+1(x

(j)
k+1)] can be exactly determined by means of numerical

integration, that is,

E
wk

[Jk+1(x
(j)
k+1)] =

Z

n

Jk+1(xk+1) Px

k+1(xk+1) dx
k+1 .

This calculation is computationally demanding, why approximate solutions are often employed.

This can be done by means of the unscented transformation (UT), which yields estimates of

mean and covariance of nonlinearly transformed random variables. The UT is superior to the so-

lutions provided by the extended Kalman filter [JU97, vdMDdFW00, JUDW00, JU04, XZC06,

CHL05]. Nevertheless, the unscented transformation is not employed in this case because of

two reasons. Firstly, the accuracy of the whole algorithm shall not su↵er from additional errors

resulting from the calculation of the considered expectation value, which complicates the anal-

ysis of the algorithm. Secondly, the proposed algorithm is compared to other solutions, which

do not determine the value Ewk
[Jk+1(x

(j)
k+1)] by means of the UT. The di↵erences in the result-

ing value functions originating from both ways of computing Ewk
[Jk+1(x

(j)
k+1)] are described in

Appendix D by means of an example.

Comments on the Interpolation

As described in Section 2.2.6, dynamic programming is computationally not tractable for

continuous-valued problems in general. Moreover, analytical solutions to the optimal control

problem cannot be found. Therefore, approximations are inevitable. The considered approx-

imation of the value function by means of spline interpolation is one possible approximation.

Depending on the smoothness of the value function, the number of grid points has to be chosen

appropriately. Since the value function is unknown in general, heuristics are employed. Another

parameter to be selected carefully is the placement of the grid points. It seems to be useful to

choose a higher concentration in the center area of the considered part of the state space. In

this region, the interpolant is assumed to be close to the true, but still unknown, value function.

The chosen parameters to determine the grid are given in Appendix F.
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3.2. Practical Methods

The value function10 is employed in the dynamic programming part of Algorithm 4 in line 10

to determine the cost-to-go for the considered state. This cost function is minimized in the

next step of the algorithm. Higher-order polynomials su↵er from non-closed solutions to the

minimization problem, even if only the necessary condition

df(x)

dx
= 0

is evaluated. This is due to the fact that there is no general closed-form algorithm to determine

the roots of a polynomial of degree five or higher [Bos06]. Therefore, cubic functions seem to

be a suitable choice for the piecewise polynomial interpolation of the value function.

Minimization

The calculation of the cost function Vk(x
(i)
k

, u
(i,j)
k

) in line 10 of Algorithm 4, which is not

minimized yet, yields the expected cost-to-go from the state x
(i)
k

via one specific terminal state

to the terminal time. The subsequent interpolation with respect to the control variables in

line 12 yields a twice continuously di↵erentiable function in u
k

to be minimized. Because

of the piecewise cubic spline interpolation, the general minimization problem can be solved

analytically. For each spline piece, the absolute minimum can be obtained by evaluating the

necessary minimum condition
@V

spline

k
(x(i)

k
, u

k
)

@u
k

= 0T
. (3.60)

Since (3.60) is at most quadratic, the solution can be obtained easily. A second pair of can-

didates are the borders of the interval, in which the cubic spline interpolates the value func-

tion. Comparison of the evaluation of the function V
spline

k
(x(i)

k
, u

k
) for all candidates yields

the minimum of the considered spline piece. Execution of this procedure for all intervals and

final comparison of the minima of all spline pieces yields the desired global minimum and the

function Jk(x
(i)
k

).

10 better: its interpolant
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CHAPTER 4

Simulation Results

In this chapter, the algorithms introduced in Chapter 3 are evaluated by means of two scalar

example systems. Moreover, an alternative calculation to numerical integration to determine

Ewk
[Jk+1(x

(j)
k+1)] in Algorithm 4 is discussed. Implementation details are given in Appendix F.

4.1 Considered Systems and Setting

In the following, two di↵erent scalar systems are considered, which are given by

xk+1 = sin(q xk) + uk + wk , (4.1)

xk+1 =
p

2 sin
⇣
xk +

⇡

4

⌘
+

xk

2
� 1 + uk + wk , (4.2)

where xk, uk, wk 2 and q = 3 ⇡

4 . For the first considered system (4.1), the simulations

are performed for starting values x̂0 2 X1 := {�1,�0.8, . . . , 1} and for noise with standard

deviations � 2 S1 := {0.1, 0.2, 0.3}. The simulations of the second system (4.2) use x̂0 2 X2 :=

{�10,�8, . . . , 10} and � 2 S2 := {1, 3, 5}.

To apply model predictive control, the decision-making horizon window is set to N = 5 steps.

That is, the optimal state-feedback control is determined for a horizon of five time steps. The

simulations have been carried out for ten time steps.

4.2 Application of the Minimum Principle

In this section, the control sequence resulting from Algorithm 2 is analyzed. To apply the contin-

uation process of Section 3.2.2 to solve the nonlinear equation system (3.36), the parameterized

systems are given by

xk+1(�) = � sin(q xk(�)) + (1� �) xk(�) + uk(�) + wk (4.3)

and

xk+1(�) = �

✓
p

2 sin
⇣
xk(�) +

⇡

4

⌘
+

xk(�)

2
� 1

◆
+ (1� �) xk(�) + uk(�) + wk , (4.4)
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Chapter 4. Simulation Results

respectively. In Figure 4.1(a) and Figure 4.1(b), the transformations of the linear system

f(x, 0) = x into the desired nonlinear functions f(x, 1) of the systems (4.1) and (4.2) are

depicted.
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!
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� = 0.25
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� = 1

(a) f(x, �) = �
`
sin

` 3 ⇡
4 x

´´
+ (1� �) x.
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� = 1

(b) f(x, �) = �

“p
2 sin

`
x + ⇡

4

´
+ x

2 � 1
”

+ (1� �) x.

Figure 4.1: Considered functions depending on x and a homotopy parameter �. The functions depend on a

homotopy parameter �, which transforms the linear system f(x, 0) = x into the desired nonlinear systems f(x, 1).

The solution of each homotopy step is employed as the initial guess of the solution of the next

homotopy step. The system state is propagated by means of (3.7).

The value functions for the parameterized systems (4.3) and (4.4) are given by

JN(xN) =
1

2
(xN � c)2

,

Jk(xk, �) =
1

2

�
(xk � c)2 + a (u⇤

k
(�))2

�
+ E

wk

[Jk+1 (xk+1(�))] , (4.5)

where a = 2. The desired target state c = 0 is an unstable equilibrium point for both considered

systems.

With

hk+1 :=
d2

Jk+1

dx
2
k+1

,

the approximated value functions according to (3.5) are given by

JN(xN) = (xN � c)2
,

Jk(xk, �) =
1

2

�
(xk � c)2 + a (u⇤

k
(�))2

�
+ Jk+1 (xk+1(�)) +

1

2
�

2
hk+1 (xk+1(�)) . (4.6)

The costate recursion (3.12) and the Hamilton function (3.16) yield the necessary minimum

condition
@Hk(x⇤k(�), pk+1(�), u⇤

k
(�), wk)

@uk

= a u
⇤
k
(�) + pk+1(�) = 0
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along the optimal state and control trajectories and, therefore, an analytical solution

u
⇤
k
(�) = �a

�1
pk+1(�) , (4.7)

which is a candidate for the optimal state-feedback control. Therefore, (4.7) can be employed

to verify the numerical solution of the algorithm.

Remark 4.1 In contrast to an algorithm, which does not employ the continuation process, the

simulations of the considered systems according to Algorithm 2 almost always converged and

provided correct results with respect to (4.7). Hence, the additional expenses arising from the

continuation are justified.

Notation. Since the results of Algorithm 2 serve as initialization of Algorithm 4, in the follow-

ing, the states and the control variables are denoted by x
init

k
and u

init

k
, respectively. Moreover,

J
init

�=i
denotes the value function approximated by (4.6) for � = 1 and k = 0. The system is

a↵ected by noise with standard deviation �.

4.2.1 Noise Influence

In case of the first considered system, (4.1) reveals that the influence of noise is as strong as

the influence of the system input uk. Moreover, the sine, as the nonlinear part of the system

function, is bounded and attains values within the interval [�1, 1]. Thus, even the influence of

noise with standard deviation � = 0.1 can be regarded as a relatively strong influence on the

considered system. This fact is stressed by Figure 4.2 for one example simulation with x̂0 = 1,

where the deviations of the state and control trajectories can be seen easily. In Figure 4.2(a),

the deviations of two state trajectories are depicted. The di↵erences reveal the strength of

the noise influence on system (4.1). In case of the deterministic system, that is � = 0, the

state trajectory quickly converges toward the target point c = 0. In case of the noise-a↵ected

system with noise standard deviation � = 0.1, the state trajectory oscillates around zero. The

trajectories of the corresponding state-feedback controls in Figure 4.2(b) behave similarly. In

case of the noise-a↵ected system, the state-feedback control tries to lead the system state toward

the target point, which explains the peaks of the trajectory, when the system state significantly

deviates from the target point.

To emphasize the influence of the noise on system (4.2), in Figure 4.3 an example state trajectory

and the corresponding control trajectory are depicted. Even for the smallest simulated noise

influence, that is � = 1, and the initial value x̂0 = 10, the di↵erences between the trajectories

are again obvious and due to the noise term. Therefore, both simulated systems su↵er from

relatively strong noise disturbances, which motivates the consideration of noise in the design of

the controller.
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(a) Example state trajectories. Even in the case of small

noise influence, the deviations between the noise-a↵ected

trajectory and the trajectory of the deterministic system

can be seen easily.
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(b) Example control trajectories. Due to the noise in-

fluence, both trajectories di↵er significantly. The state-

feedback control at each time step is chosen to lead the

system state toward the desired target point.

Figure 4.2: Example state and control trajectories for � = 0 and � = 0.1 for system (4.1). The system state is

shifted significantly due to the relatively strong noise influence on the system. The corresponding system input is

chosen to lead the state toward the target point.
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(a) Example state trajectory for system (4.2). Even for

� = 1, which is the smallest considered noise standard

deviation, the noise influence on the system can be seen

easily.
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(b) Example control trajectories for system (4.2). To

modify the state trajectory in Figure 4.3(a), the control

decision has to be adapted. The significant di↵erences

between one example control trajectory of the system in-

fluenced by noise with standard deviation � = 1 and the

deterministic control sequence can be seen easily.

Figure 4.3: Example state and control trajectories for system (4.2). Comparing the trajectories for the determin-

istic system, that is � = 0, and the system a↵ected by noise with standard deviation � = 1, the di↵erences become

obvious immediately. Even for this noise influence, the deviations are significant.
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4.2.2 Monte-Carlo Simulation

For � > 0, the arising cost of the simulation changes with each run. A Monte-Carlo simulation

provides an approximate upper bound J
MC init

�=i
of the true value function depending on the noise

standard deviation � = i by calculating the arithmetic mean of all arisen cost of M simulations

starting from x̂0 2 Xj. That is, for x̂0 2 Xj and � 2 Sj, j = 1, 2,

J
MC init

�=i
(x̂0) :=

1

M

MX

t=1

J
simt
�=i

(x̂0) , (4.8)

where the real state and the corresponding control sequences are known after the simulation

and inserted into (3.3). Since each simulation depends on the value function to be minimized,

the Monte-Carlo estimate also depends on this value function. That is, the aim to obtain the

approximated value function (4.6) leads to J
MC init

�=i
in (4.8).

Remark 4.2 After multiple runs, the result of the Monte-Carlo simulation is assumed to

provide a su�ciently good estimate J
MC init

�=i
of the true value function (under deterministic

control). This assumption is based on the uniqueness of the solution to the LQ control problem

and the employment of the continuation process, which keeps the solution in the minimum.

Importance of Value Function Approximation

In some practical applications, only the knowledge of the true value function is desired, instead

of the optimal control leading to the value function. Then, a su�ciently good approximation

of the value function, for example by means of (3.5), may serve as an estimate of the true value

function. Since a Monte-Carlo estimate requires a multitude of simulations, the approximator

of the value function is much easier to obtain, since only one calculation is needed. When the

influence of the neglected higher-order derivatives in the Taylor series expansion of the value

function increases with increasing standard deviation of the noise term, the error of the pro-

posed approximation also increases in cases, where these derivatives do not vanish. For a fixed

terminal time and finite-horizon control1, the quality of the value function approximation (4.6)

for system (4.1) is discussed in detail in [DOW+06] .

4.2.3 Quality of the Initializing Controller

Since the controller, which employs the results of Algorithm 2, is in principle equivalent to a

controller for a deterministic system, it is not reasonably applicable to many classes of noise-

a↵ected systems in general. In case of systems, when even small noise e↵ects causes relatively

strong influence, for example system (4.1), the application may be justified. Otherwise, the

approximation of the value function up to second-order derivatives cannot be justified, if the

higher-order derivatives of the value function do not vanish.

1 not MPC

57



Chapter 4. Simulation Results

Comparison with Dynamic Programming on a Static Grid

To compare the solution of the proposed initializing algorithm with a standard solution, a

dynamic programming approach on a static grid has been chosen.

In this o✏ine-computation approach, the state space as well as the control space is discretized.

The discretized time-invariant state space heuristically covers the maximum range of the grid

G
init

k
. This range has been determined heuristically after multiple simulations with the proposed

algorithm. Moreover, the set of possible control variables has also been discretized, such that

it is possible to cover the range of the whole grid from each grid point. For both systems (4.1)

and (4.2), sets of 250 states and 300 controls have been chosen. Detailed information about

the discretization of system (4.1) and system (4.2) is given in Tables 4.1 and 4.2, respectively.

Table 4.1: Discretization intervals and distance of the grid points of the state and control space in case of

system (4.1) for di↵erent noise influences.

� = 0.1 � = 0.2 � = 0.3

discretized interval (state) [�1, 1] [�1.1, 1] [�1.8, 1.7]

distance of two grid points (state) 0.0080 0.0084 0.0140

discretized interval (control) [�2, 2] [�2.1, 2] [�2.8000, 2.7000]

distance of two grid points (control) 0.0134 0.0137 0.0184

Table 4.2: Discretization intervals and distance of the grid points of the state and control space in case of

system (4.2) for di↵erent noise influences.

� = 1 � = 3 � = 5

discretized interval (state) [�10, 10] [�13, 13] [�23, 20]

distance of two grid points (state) 0.0800 0.1040 0.1720

discretized interval (control) [�11, 11] [�13.9999, 13.9999] [�23.9999, 21]

distance of two grid points (control) 0.0733 0.0933 0.1499

To analyze the quality of the controller employing the initializing algorithm, the Monte-Carlo

estimate J
MC DP

�=i
of the original value function (4.5) for � = 1 and system (4.1) is compared to

J
MC init

�=i
for i 2 {0.1, 0.3} as depicted in Figure 4.4.

Remark 4.3 Since the value function represents the minimal expected cost, smaller values

represent lower cost, which is desirable.

In case of noise standard deviation of � = 0.1, only slight di↵erences between both Monte-

Carlo estimates can be seen as shown in Figure 4.4(a). A suitable approximation by means of

the considered dynamic programming approach is assumed, due to the small distance of the

elements of the discretized sets as revealed by Table 4.1. Therefore, the quality of the solution

provided by the proposed algorithm is su�ciently good. In case of noise standard deviation
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−1 −0.5 0 0.5 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x̂0 !

co
st
!

JMC init
�=0.1

JMC DP
�=0.1

(a) For � = 0.1 only minimal di↵erences can be seen.
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(b) The di↵erences between the DP-controller and the con-

troller using the initializing algorithm are significant. The

quality of the DP-controller significantly outperforms the

quality of the other controller.

Figure 4.4: Monte-Carlo estimates of the value function resulting from the discrete DP algorithm and the proposed

algorithm for system (4.1).

� = 0.3, the di↵erences between both Monte-Carlo estimates become significant. This is due

to the fact that the error in the determination of the control sequence by means of Algorithm 2

increases with increasing standard deviation. Therefore, the controller based on DP on a static

grid significantly outperforms the initializing controller.

In case of system (4.2), the Monte-Carlo estimates J
MC init

�=i
and J

MC DP

�=i
of the corresponding

value functions are compared in Figure 4.5 for i 2 {3, 5}. Similar to system (4.1), the DP

algorithm on the static grid provides better results for system (4.2) in case of � = 3 as depicted

in Figure 4.5(a). Depending on the size of the considered region of the state space, the distance

between the grid points increases as described in Table 4.2. Therefore, the quality of the static

grid based DP controller decreases. In case of � = 5, even the initializing algorithm provides

superior results to the discrete DP algorithm, which is revealed by Figure 4.5(b).

Thus, the accuracy of the dynamic programming algorithm in case of the second considered

system is not close to the true, but unknown, solution. Due to the required amount of memory,

it was not possible to choose more grid points and, therefore, to obtain a finer discretization of

the state space. For implementation details of this algorithm, it is referred to Appendix F.3.

Remark 4.4 As described in the previous part, the results of the controller employing Al-

gorithm 2 to obtain the desired optimal control sequence, provide similar results to another

controller in case of small noise influence. This controller is based on dynamic programming

on a static grid. With increasing noise influence, the grid based DP algorithm outperforms

the Algorithm 2, if the length of the discretization intervals is su�ciently small. Otherwise,

the quality of the grid based controller decays rapidly. Therefore, the considered variant of

59



Chapter 4. Simulation Results

−10 −5 0 5 10
60

70

80

90

100

110

120

130

140

x̂0 !

co
st
!

JMC DP
�=3

JMC init
�=3

(a) The controller based on DP on the static grid provides

better results than the initializing controller with � = 3 for

system (4.2).
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(b) In case of � = 5, the range of the restricted state

space as well as the length of the discretization intervals

increases. Therefore, the quality of the controller based

on DP on the static grid significantly decreases. Even the

initializing controller outperforms the controller based on

DP on a static grid.

Figure 4.5: Monte-Carlo estimates of the value function resulting from the DP algorithm on a static grid and

the proposed algorithm for system (4.2). With increasing length of the discretization intervals, the quality of the

controller based on the DP algorithm on a static grid significantly decreases.

dynamic programming is not applicable in general. Thus, another controller is provided, which

employs the results of Algorithm 2 as initialization to derive an improved state-feedback control

by means of Algorithm 4.

4.3 Dynamic Programming Based on Spline Interpolation of the Value

Function

As described in Section 3.1, Algorithm 2 yields a control sequence (û0, . . . , ûN�1), which solves

the nonlinear equation system (3.36). Equation (3.36) satisfies the necessary minimum condi-

tion (3.19) for the approximated value function (3.5) for all time steps of the decision-making

horizon. There, the value function is approximated by Taylor series expansion of up to second-

order derivatives. Employing that sequence as an initial guess, Algorithm 4 determines an up-

dating solution to the considered optimal control problem of the original stochastic system (3.1)

and the original value function

JN(xN) =
1

2
(xN � c)2

Jk(xk) =
1

2

�
(xk � c)2 + a (u⇤

k
)2
�

+ E
wk

[Jk+1 (xk+1)] , (4.9)
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4.3. Dynamic Programming Based on Spline Interpolation of the Value Function

which is not approximated by means of Taylor series expansion anymore. The new approxima-

tion scheme employs piecewise cubic spline interpolation in the state variable xk as well as in

the control variable uk within a restricted region of the state space. In the considered scalar

case, the sets Pk, k = 0, . . . , N , are given by

Pk :=

⇢
xk �

3

2
�

x

k
, xk �

3

4
�

x

k
, xk �

3

8
�

x

k
, xk, xk +

3

8
�

x

k
, xk +

3

4
�

x

k
, xk +

3

2
�

x

k

�
, (4.10)

where xk denotes the predicted mean of the successor state of x̂0. The corresponding covariance

is given by �
x

k
.
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(a) Area of interest for system (4.1), where x̂0 = �1, � =

0.1.
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(b) Area of interest for system (4.2), where x̂0 = �10, � = 1

Figure 4.6: Restriction of the state space for both considered systems. Around the sequence of mean values,

obtained by the employment of the initial guess of the control sequence and the application of the unscented

transformation, the state space is restricted. The spread of this restriction depends on the covariance of each

successor state xk of the initial state x̂0.

The modified restriction G
init

k
of the state space according to (3.54) is depicted in Figure 4.6.

Figure 4.6(a) depicts the area of interest for system (4.1), and Figure 4.6(b) displays the

corresponding restriction of the state space for system (4.2).

To stabilize the spline interpolation of the value function, two additional dummy points at the

extremal points of Ginit

k
are introduced, which are not employed in the optimization. Details

on this extension of the grid are given in Appendix F.2.2.

Therefore, in the considered scalar case, the value function is interpolated on a grid, consisting

only of 11 points, where only the 7 points of (4.10) are used to find the desired optimal control.

Examples for spline interpolations of the value function (4.9) of system (4.1) within the re-

stricted region of the state space are depicted in Figure 4.7 for di↵erent time steps of the

decision-making horizon.
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(b) J4(x4) in the area of interest, decision-making horizon:

2 steps.
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(c) J3(x3) in the area of interest, decision-making horizon:

3 steps.
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(d) J2(x2) in the area of interest, decision-making horizon:

4 steps.

Figure 4.7: Spline interpolation of the value function Jk in the area of interest for x̂0 = �1 and � = 0.2. The

changes of the value function can be seen for di↵erent time steps k within a five-step horizon window. With

increasing prediction horizon, the expected minimal cost-to-go increases.
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4.3. Dynamic Programming Based on Spline Interpolation of the Value Function

In Figures 4.7(a)–4.7(b), the set Ginit

k
di↵ers from Pk. The modification according to (3.54) is

applied for k > 3. Therefore, the cluster of knots around zero can be seen in both figures.

4.3.1 Improvement of the Initial Solution

To evince the improvement of the updating algorithm, compared to the initial solution given by

Algorithm 2, the systems (4.1) and (4.2) have been simulated. In each simulation, both the grid

based controller and the controller employing Algorithm 2 su↵er from exactly the same noise

vector. Therefore, a comparison of both controllers is justified, even in case of few simulations.

State and Control Trajectories

In the following, several state and control trajectories are discussed resulting from the applica-

tion of the proposed controllers. The corresponding algorithms are given by Algorithm 2 and

its improvement Algorithm 4.
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(a) Average state trajectories for system (4.1). On aver-

age, the controller employing only the initial solution leads

the system state faster toward the desired goal point than

the controller, which additionally employs the improved

solution.
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(b) Average control trajectories for system (4.1). Since

the state trajectories converge toward zero, the trajecto-

ries of the corresponding controls converge toward zero,

too.

Figure 4.8: Average state and control trajectories of system (4.1) for the initializing solution and the proposed

additional improvement for � = 0.2 and x̂0 = 1.

In Figure 4.8, the average state and the corresponding control trajectories for system (4.1) with

� = 0.2 and x̂0 = �1 are depicted after 2000 simulations. Both considered controllers lead the

state toward the desired unstable equilibrium point c = 0. The controller, which employs only

Algorithm 2, leads the system state faster toward zero on average, since it does not consider the

noise influence explicitly. Due to the original cost function to be minimized, the proposed new

controller incorporates the noise influence in its determination of the optimal state-feedback
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control. Hence, the results are more conservative, that is, the state-feedback and the state

do not converge toward zero as fast as the state-feedback resulting from Algorithm 2. This

behavior is depicted in Figure 4.8(b).
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(a) Average state trajectories for system (4.2). Depending

on the system function, the cost function, and the noise

influence on the system, the average state trajectories do

not converge toward the desired state c = 0.
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(b) Average control trajectories for system (4.2). The av-

erage control trajectories for ten time steps also converge

toward a value 6= 0.

Figure 4.9: Average state and control trajectories of system (4.2) for the initial solution and the proposed

improvement for � = 5 and x̂0 = 10.

For system (4.2), Figure 4.9 reveals the deviations of the average trajectories of the controller

employing only the initial solution (Algorithm 2) and the controller, which additionally employs

the proposed improvement (Algorithm 4). Since the initial solution does not explicitly consider

the noise influence on the system, the resulting state sequences are closer to the desired target

state c = 0, compared to the more complex controller, which additionally employs Algorithm 4.

However, the simple structured controller requires larger inputs uk to obtain this result. De-

pending on the structure of the system function (4.2) and the weights of the parameters of the

value function (4.9), the states do not converge toward the equilibrium point c = 0, which is

shown in Figure 4.9(a). Therefore, the controls do not converge toward zero neither, which is

depicted in Figure 4.9(b).

Remark 4.5 With a weighting factor a = 0.01 in (4.9), both the average states and the average

state-feedback controls of system (4.2) converge toward zero.

Value Functions

According to Section 4.2, Monte-Carlo estimates of the minimized value functions J
init

�=i
and

J
spline

�=0 are compared, where J
spline

�=0 denotes the value function of the controller, which is based

on dynamic programming with spline interpolation of the value function (Algorithm 4).
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4.3. Dynamic Programming Based on Spline Interpolation of the Value Function

In Figure 4.10, the Monte-Carlo estimates J
MC init

�=i
and J

MC spline

�=i
for the first considered sys-

tem (4.1) with i 2 S1 and x̂0 2 X1 are presented after 2000 simulations. In case of noise
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(a) Monte-Carlo estimates of J
init
�=0.1 and J
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(b) Monte-Carlo estimates of J
init
�=0.2 and J

spline
�=0.2 .
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Figure 4.10: Monte-Carlo estimates of the value functions J init
�=i and Jspline

�=i of system (4.1) for increasing noise

influence. The stronger the noise a↵ects the system, the better results are presented by the new algorithm compared

to the initial solution.

influence with standard deviation � = 0.1, the di↵erences are small, since the value function

approximation by means of Taylor series expansion up to second-order derivatives is almost

correct. Therefore, Algorithm 2 provides satisfactory results, stressed by Figure 4.10(a). Nev-

ertheless, the di↵erences become more and more significant, when the noise influence increases.

This fact is revealed by Figures 4.10(b) and 4.10(c). Moreover, it can be seen that the o↵set be-

tween J
MC init

�=i
and J

MC spline

�=i
is not constant. This property is due to the fact that Algorithm 4

explicitly incorporates the noise influence.
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Chapter 4. Simulation Results

In case of the second considered system (4.2), the corresponding Monte-Carlo estimates are

depicted in Figure 4.11, where x̂0 2 X2 and � 2 S2. Similar results to before are revealed.
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(a) Even for � = 1, a slight improvement of the initial

solution can be seen.
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(b) With increasing noise influence, the di↵erence between

both Monte-Carlo estimates becomes more significant.
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(c) For � = 5 the proposed update algorithm still yields

much better results than the initial solution.

Figure 4.11: Monte-Carlo estimates of the value functions J init
�=i and Jspline

�=i of system (4.2) for i 2 S2 and x̂0 2 X2.

The improvement of the updating algorithm can be seen easily. The di↵erences become more obvious with increasing

noise disturbances.

With increasing noise influence, the improvement of the initial solution described in Algorithm 4

becomes more and more significant, which is stressed by Figures 4.11(a)–4.11(c).

From the previous results, it can be seen that the additional employment of Algorithm 4, in fact,

improves the solution provided by Algorithm 2. Moreover, this improvement is not restricted

to one specific setting of one special system.
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4.4. Replacement of Numerical Integration with the Unscented Transformation

4.4 Replacement of Numerical Integration with the Unscented Transfor-

mation

As mentioned in Section 3.2.5, there are several ways to determine the value Ewk
[Jk+1(x

(j)
k+1)]

in line 9 of Algorithm 4. In this thesis, numerical integration is used to avoid additional

inaccuracies due to another approximation method. The employment of the UT seems to be

a promising approximation for the considered case, since the density of the successor state is

Gaussian. This point is important, since the parameters of the UT are well-known in case of

Gaussian distributions. In the following, several di↵erences between the implementation of the

unscented transformation and the numerical integration are discussed.

On the one hand, the computation of the value Ewk
[Jk+1(x

(j)
k+1)] by means of the UT is computa-

tionally less demanding than numerical integration. On the other hand, further approximation

errors are introduced, in contrast to numerical integration.
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Figure 4.12: Monte-Carlo estimates of the value function, where the numerical integration is replaced with the

UT in system (4.2) for � = 5. If the UT replaces the numerical integration to determine Ewk [Jk+1(x
(j)
k+1)], the

quality of the controller decreases significantly.

In Figure 4.12, two Monte-Carlo estimates of the true value function of system (4.2) are de-

picted. These estimates depend on the chosen controller, where noise with standard deviation

� = 5 a↵ects the system. As expected, the function of the Monte-Carlo estimate J
MC spline

�=5 is

less than the Monte-Carlo estimate J
MC spline UT

�=5 , which employs the UT instead of numerical

integration. Hence, exact computation of the value Ewk
[Jk+1(x

(j)
k+1)] is an important point of

the proposed algorithm.

Remark 4.6 It is important to mention that Figure 4.12 represents simulation results, which

are independent of the other results in this thesis. This is the reason, why the Monte-Carlo

estimates of J
spline

�=5 may look di↵erent compared to previous results.

Review: Scaled unscented transformation
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A modification of the standard UT is given by the scaled UT, which is introduced in [Jul02].

The scaled version of the unscented transformation modifies a given sigma point X (k)
i
2

X
(k), such that it is moved toward or away from the mean value x

k
= X

(k)
0 according to

X̃
(k)
i

= X
(k)
0 + ↵(X (k)

i
� X

(k)
0 ) . (4.11)

The corresponding weights have to be adjusted appropriately. For further details on the

scaled UT, it is referred to Appendix D.
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(a) For ↵ = 0.01 the Monte-Carlo estimates for both the

initial solution and the algorithm employing the scaled

UT almost coincide.
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(b) The di↵erence between the initial solution and the al-

gorithm with the scaled UT becomes more obvious. Un-

expectedly, the value function of the initial solution is

smaller.

Figure 4.13: Monte-Carlo estimates of the value functions of system (4.1) of two controllers, where the first

one employs the initial solution. The second one additionally employs Algorithm 4, where the scaled unscented

transformation replaces the numerical integration to determine Ewk [Jk+1(x
(j)
k+1)]. In the considered case, the scaled

unscented transformation fails to predict the expected value Ewk [Jk+1(x
(j)
k+1)] su�ciently well, when the scaling

parameter is set to ↵ = 0.01.

The scaled UT with a scaling parameter

↵ = 0.01

to determine Ewk
[Jk+1(x

(j)
k+1)] is analyzed in the following. For system (4.1), the Monte-Carlo

estimates J
MC spline

�=i
and J

MC init

�=i
with i 2 {0.1, 0.2} are depicted in Figure 4.13. It can be

seen in Figure 4.13(a) that the Monte-Carlo estimates of the controller, which only applies the

minimum principle, and the controller, which additionally employs the proposed improvement

with the scaled UT, almost coincide. This fact does not surprise, since the absolute noise

influence is small with � = 0.1. The di↵erences become more obvious, when the standard

deviation of the noise is increased to � = 0.2. The corresponding functions are shown in

Figure 4.13(b). Unexpectedly, the assumed better controller yields worse results than the
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4.5. Comparison with Other Solutions

simple controller. This behavior can be explained by the employment of the scaled UT with

↵ = 0.01 to determine Ewk
[Jk+1(x

(j)
k+1)] in Algorithm 4, where higher-order information gets

lost. This loss of higher-order information is due to the small value of ↵, even if the prediction

of the mean contains a second-order bias correction term.

−1 −0.5 0 0.5 1

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x̂0 !

co
st
!

JMC spline UT
�=0.2 , � = 1

JMC init
�=0.2

Figure 4.14: Monte-Carlo estimates of the value functions of system (4.1) of two controllers employing the initial

algorithm and the improved algorithm with the unscaled UT. With the unscaled UT, the new algorithm, in fact,

improves the initial solution.

In case of

↵ = 1 ,

that is, the employment of the unscaled UT, the Monte-Carlo estimates of value functions for

� = 0.2 are given in Figure 4.14. The accuracy of the unscented transformation is improved,

due to the larger value of ↵ = 1. Therefore, the expected improvement of the initial solution

is obtained. That is, the Monte-Carlo estimate of the value function J
init

�=0.2 is greater than the

Monte-Carlo estimate of J
spline UT

�=0.2 . As indicated by previous simulation results, this property

rests upon the superiority of the results, when Algorithm 4 is additionally employed.

Nevertheless, the unscented transformation has not been employed to calculate Ewk
[Jk+1(x

(j)
k+1)]

in Algorithm 4 to avoid additional inaccuracies in the determination of the optimal state-

feedback control. Moreover, the solution, with which the new algorithm is compared in the

next section, does not employ the unscented transformation at this computation step either.

4.5 Comparison with Other Solutions

In this section, the proposed new algorithm (initialization by Algorithm 2 and subsequent

employment of Algorithm 4) is compared to other possible solutions to the considered optimal

control problem.
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4.5.1 Dynamic Programming on an Adaptive Grid with Few Grid Points

The proposed new algorithm is compared to a grid based dynamic programming approach in the

following. This approach employs the same adaptive grid G
init

k
, k = 0, . . . , N, as Algorithm 4

to perform dynamic programming. That is, the considered grid consists of 7 grid points. To

determine this grid, Algorithm 2 is employed at each time step to return the initializing control

sequence, which solves the nonlinear equation system (3.36). Since the chosen DP algorithm

also depends on the adaptive changes of the state space restriction, this algorithm is an online

algorithm, too.
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Figure 4.15: Comparison of the Monte-Carlo estimates JMC spline
�=5 and JMC DP 11

�=5 for system (4.2). The impact

through the spline interpolation is obvious.

The di↵erence between both algorithms is that this grid based dynamic programming does not

interpolate the value function. Therefore, the integration to obtain the value Ewk
[Jk+1(x

(j)
k+1)] is

replaced with a summation. The consideration of this solution demonstrates that the employ-

ment of spline interpolation is beneficial. The Monte-Carlo estimates of the value functions

J
spline

�=5 and J
DP 11
�=5 for system (4.2) are compared in Figure 4.15. Again, all considered con-

trollers su↵er from the same noise vector in each simulation, which explains the symmetry of

the peaks in the Monte-Carlo estimates of the corresponding value functions. It can be seen

easily that the spline interpolation, in fact, yields better results than the adaptive grid based

dynamic programming algorithm.

4.5.2 Dynamic Programming on a Static Grid with Many Grid Points

In the following, the proposed algorithm is compared to the o✏ine dynamic programming

algorithm on the static grid introduced in Section 4.2.3. As already mentioned, the quality of

the DP algorithm strongly depends on the granularity of the discretized state and control spaces.

In Figure 4.16, the Monte-Carlo estimates of the value functions J
DP

�=i
, J

spline

�=i
, i = 0.1, 0.3, of

system (4.1) are compared, which are obtained by application of both considered controllers.
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(b) For � = 0.3 the controller, which employs Algorithm 4,

yields better results than the controller based on DP on

a static grid.

Figure 4.16: Comparison of the new controller with a controller, which employs a static grid based DP algorithm,

for system (4.1).

In case of small noise influence, the di↵erences between both considered controllers are small

as indicated by Figure 4.16(a). Due to the small discretization intervals given in Table 4.1,

the DP algorithm on the static grid is assumed to yield satisfactory results. Nevertheless, the

new controller provides at least results of same quality. With increasing noise influence and,

therefore, larger discretization intervals, the quality of the results of the DP algorithm on the

static grid decays and is significantly outperformed by the results of the new controller, stressed

by Figure 4.16(b) for � = 0.3.

In Figure 4.17, the Monte-Carlo estimates of the value functions for system (4.2) are plotted.

In case of small noise influence, the di↵erences between both controllers are small as depicted

in Figure 4.17(a) for � = 1. With increasing �, the considered region of the state and control

spaces becomes larger. Therefore, the o✏ine dynamic programming algorithm yields worse

results than the proposed new controller, which is shown in Figure 4.17(b) for � = 5.

Taking everything into account, the proposed new algorithm and the DP algorithm on a static

grid yield results of the same quality in case of small noise influence and small discretization

intervals. With increasing noise standard deviation, the new controller outperforms the static

grid based DP controller significantly. Moreover, the proposed method is able to adapt the

spread of the grid, depending on the current measured state.

4.5.3 Dynamic Programming on an Adaptive Grid with Many Grid Points

The combination of the adaptive grid based controller with few grid points from Section 4.5.1

and the controller based on dynamic programming on a static grid with many grid points from
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(b) For � = 5, the controller employing Algorithm 4 yields

better results than the DP based controller.

Figure 4.17: Comparison of the new controller with a controller, which employs a static grid based DP approach,

for system (4.2).

Section 4.5.2 results in a controller, which performs dynamic programming on an adaptive

grid with many grid points. To determine the adaptive grid at each time step, Algorithm 2 is

employed to obtain the control sequence, which solves the nonlinear equation system (3.36),

such that the restricted region of the state space can be determined. This controller is expected

to yield the best results of all mentioned controllers, since it combines the advantages of the

adaptive grid and a fine discretization. Therefore, the proposed approach to optimal control of

nonlinear stochastic systems is compared to this algorithm in the following.

The range of the adaptive grid equals the range of Ginit

k
, k = 0, . . . , N , which is used by

Algorithm 4. In contrast to spline interpolation on a grid with few points, the state space as

well as the control space is discretized with 202 grid points. Since the range of the grid adapts

with each time step and depends on the current system state, this algorithm is also an online

algorithm.

The Monte-Carlo estimates J
MC spline

�=i
and J

MC DP202
�=i

are displayed for i = 3, 5 in Figure 4.18.

The figure reveals that there is almost no di↵erence in the considered Monte-Carlo estimates

after 500 simulations. Independent of the noise influence, both compared algorithms yield

almost the same results for all noise influences and both considered systems. This property is

exemplarily revealed by Figure 4.18 for system (4.2) and � = 3, 5.

4.6 Computational E↵ort

In this section, the computational e↵ort of the initializing solution, the proposed solution based

on spline approximation in the DP algorithm, the DP algorithm on an adaptive grid with few
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distinguished easily.

Figure 4.18: Comparison of the Monte-Carlo estimates of the value function for system (4.2) with � = 3, 5 for the

new algorithm and an algorithm, which is based on DP on an adaptive grid with many grid points. In both cases,

there is no obvious di↵erence.

points, and the DP algorithm on an adaptive grid with many points are compared. All these

algorithms are online algorithms and, therefore, not comparable to the o✏ine algorithm on the

static grid.

The computational time has been evaluated for system (4.1), where model predictive control

has been carried out for ten steps. The decision-making horizon of the controller was set to five

steps. Since all solutions employ the initial solution at least to initialize a subsequent algorithm,

the execution time for Algorithm 2 (init) is set to 1 time unit. The relative execution times

are given in Table 4.3.

Table 4.3: Relative execution time for di↵erent algorithms.

init spline DP 11 DP 202

1 2.51 1.04 31.72

The proposed dynamic programming algorithm with spline interpolation of the value function

on an adaptive grid (spline) computes about 2.5 times of the execution time of init. The

DP algorithm on the same adaptive grid without spline interpolation (DP 11) and the initial

solution have similar computation times. The computationally most expensive algorithm is

the DP algorithm on an adaptive grid with many (202) grid points and no spline interpola-

tion (DP 202). Because of the demanding computational requirements, this algorithm is not

applicable in practice.

73



Chapter 4. Simulation Results

4.7 Survey of Applied Methods

In case of system (4.1), all considered methods provide very similar results in case of small

noise influence. With increasing noise disturbances, the quality of the results of Algorithm 2

decreases, compared to the solutions of the spline interpolation based DP algorithm and the

DP algorithm with many grid points on the adaptive grid. On the one hand, the o✏ine DP

algorithm, which employs a static grid, possesses the advantage that only a look-up table is

required to determine the optimal state-feedback control. On the other hand, the demanding

amount of memory to pre-calculate this table restricts the applicability of this algorithm. If

the distance between two elements of the discretized state and control spaces is not su�ciently

small, the quality of the provided results is not satisfactory anymore. The employment of the

DP algorithm on the adaptive grid with few grid points does not require much computation time

and yields good results in case of smaller noise influence on the systems (4.1) and (4.2). With

increasing noise, it still yields better results than the initial solution and the o✏ine dynamic

programming algorithm. However, the quality of the results is worse compared to the quality

provided by the DP algorithm on the adaptive grid with many grid points and the proposed

new algorithm.

The simulation results of the previous parts reveal that the proposed new algorithm, which

is based on the spline interpolation of the DP value function on an adaptive grid, and the

computationally demanding DP algorithm on an adaptive grid with many grid points yield the

best results on average for all considered systems and all simulated noise influences. Only slight

di↵erences can be seen in the results of both algorithms. Because of the shorter computation

time of the new algorithm according to Table 4.3, the new algorithm is strongly preferable.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, the optimal finite-horizon control problem for nonlinear systems has been dis-

cussed, where the considered system su↵ers from additive zero-mean noise. An online-computa-

tion algorithm has been presented, which consists of two parts.

In the first part, an initial guess of the optimal control sequence has been derived for the non-

linear system, where the value function was approximated by means of Taylor series expansion

up to second-order derivatives. Extensions to higher-order approximations are possible, but

computationally demanding and requrire the existence of inverse mappings. After the approx-

imation of the value function, the properties of a stochastic version of the Hamilton function

have been exploited to be able to apply a stochastic minimum principle. Employing this mini-

mum principle, a two-point boundary-value problem has been derived. The resulting nonlinear

equation system has been solved by means of a continuation process to overcome numerical

di�culties. The comparison with a dynamic programming algorithm on a static grid revealed

that the solutions to the approximated optimal control problem are suitable in case of small

noise influence. Moreover, it has been shown that the quality of the DP algorithm strongly

depends on the granularity of the state space discretization.

However, both algorithms do not provide satisfactory results in general. Therefore, a second

algorithm has been developed to mitigate those e↵ects. This algorithm employed the solution

of the first part, that is, the control sequence solving the two-point boundary-value problem, as

prior knowledge. Hence, the state space could be restricted to an area of interest, within which

the original optimal control problem has been solved approximately. The state variable as well

as the control variable was treated as continuous variables. This result has been obtained by

interpolating the value function of the dynamic programming algorithm on a grid with few

grid points by means of piecewisely defined cubic splines. In contrast to a standard dynamic

programming approach on a static grid, the number of grid points has been reduced significantly,

which saves much computation time and memory.

The proposed method is an online algorithm, which accounts for the state- and time dependent

adaptation of the grid. Moreover, a satisfactory tradeo↵ between accuracy and computational
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e↵ort is given. Even if the curse of dimensionality of dynamic programming is not completely

eliminated, its e↵ect is reduced to a small number of grid points.

Simulations for two scalar systems revealed the superiority of the provided algorithm to a dy-

namic programming solution with an adaptive grid consisting of few grid points and a standard

dynamic programming solution on a static grid with many grid points. Moreover, the new al-

gorithm possesses the same quality as a dynamic programming algorithm on an adaptive grid,

with many grid points, which is computationally very demanding. Furthermore, the improved

algorithm, in fact, performed much better than the initial solution.

5.2 Future Work

Several open questions are worth dealing with in the future. One important point requiring

deeper analysis is the derivation of a stochastic two-point boundary-value problem, which has

not been found in literature yet. The state propagation by means of the original system function

and the employment of the mean values of the successor states to initialize the costate recursion

may be a possible approach to obtain this result. The corresponding costate sequence has to

be chosen appropriately. Furthermore, generalizations of the stochastic Hamiltonian and the

stochastic minimum principle to the case of non-additive noise influence have to be discussed

in detail.

The influence of the state space restriction to perform dynamic programming has to be analyzed

as well as the number and the position of the grid points. A minimal number of grid points

and their optimal placement are desired, such that the interpolation of the value function is

of satisfactory accuracy and the computational e↵ort remains acceptable. Depending on the

influence of the accuracy of the propagation of means and covariances to determine the state

space restriction, the employed unscented transformation has to be optimized or replaced with

another method.

Since the currently implemented algorithm employs computationally demanding numerical in-

tegration, alternative approaches have to be discussed in the future. On the one hand, the

unscented transformation is an interesting candidate for replacing the numerical integration to

calculate the mean of a nonlinearly transformed random variable. On the other hand, the exam-

ples in Section 4.5 of this thesis motivate alternative approaches, such as proposed in [HBH06],

where a closed-form prediction for nonlinear, time-invariant systems is introduced.

In the proposed algorithm, spline interpolation is employed to interpolate the value function

of the dynamic programming algorithm. Even if this approximation scheme yields promising

results, alternative approaches have to be analyzed in the future to obtain better results for

specific applications.

The nonlinear equation system (3.36) resulting from the reformulation of the optimal control

problem as a two-point boundary-value problem only contains necessary minimum conditions.

Therefore, it is desirable to evaluate, whether the obtained solution represents a local or a global
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minimum. Another important point to be dealt with, is the improvement of the numerical sta-

bility, which causes some problems when solving the nonlinear equation system. An alternative

approach to formulate the TPBVP is given by the shooting method resulting in a di↵erent

equation system, which can be solved numerically. The (multiple) shooting method has been

successfully applied in [SOD06] to improve the numerical stability of the solution to the TP-

BVP. A promising modification of existing solution methods for nonlinear equation systems can

be found in [Bra72], where a predictor-corrector scheme is proposed to reduce the problems of

singular Jacobians and, therefore, to enlarge the region of convergence. Furthermore, multiple

solutions of the nonlinear equation system can be found. This scheme is applicable, for instance

to the Newton method, the continuation method, or the Broyden method.

The extension of the considered input-a�ne examples to other classes of system inputs is one

further point to be discussed in the future.

To apply the proposed methods to some experimental setups, the program code has to be

optimized and transferred into another programming language. Apart from that, an extension

to the n-dimensional case is necessary. After that, the algorithms of this thesis can be employed

and analyzed in real experiments.
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APPENDIX A

Mathematical Definitions

A.1 The ⌦-Operator

The mapping ⌦(A, w) with A 2 ( N)m and w 2
N is defined as

⌦ :

8
<

:
( N)m

⇥
N
! ( N)m�1

(ai1···im , wl) 7!
P
k

ai1···im�1kwk 8ij 2 {1, . . . , N}, j 2 {1, . . . ,m} .

Because of the associative law, the ⌦-operator can be applied recursively according to

A⌦w ⌦ · · ·⌦ w| {z }
M times

=: A
MO

i=1

w = (A⌦ w)
M�1O

i=1

w .

For v, w 2
N the application of the ⌦-operator to both vectors is given by the dyadic product

(Kronecker product)

v ⌦ w = v w
T

.

Therefore,

A⌦ (v w
T) = A⌦ (v ⌦ w)

holds [BSMM01].

A.2 Multi-Dimensional Taylor Series Expansion

For f 2 C
1 with f : n

! , the di↵erential operator is defined as

Di
f :=

di
f

dxi
.

Then, the multi-dimensional Taylor series expansion of f is given by

f(x0 + w) =
1X

i=0

Di
f(x0)

i!

iO

j=0

w ,

where the properties of the ⌦-operator of Appendix A.1 have been exploited.
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A.3 Topological Space

Definition A.1 (Topological space) A topological space T is a tuple (X,G), where X is a

set and G is a collection of subsets of X satisfying the following axioms.

• ; 2 G and X 2 G.

• The union of any collection of sets in G is also in G.

• For U, V 2 G holds U \ V 2 G.

Definition A.2 (Points of a topological space) The elements x 2 X are called points of

the topological space T .

Definition A.3 (Topology) The collection G is a topology on X. The sets in G are the open

sets, and their complements in X are the closed sets of the topological space T .

The collection G of the open sets is closed under arbitrary unions and all finite intersections of

sets in G. It can be shown by induction that the intersection of finitely many open sets is open

again [Reh05].

A.4 The L
p Spaces

Definition A.4 (The space L
p) For p � 1, the space L

p(⌦) consists of those real-valued

Lebesgue measurable functions f on the set ⌦, for which kf(x)kp is Lebesgue integrable, that

is, Z

⌦

kf(x)kp dx < 1 .

The norm on this space is defined as

kfkp :=

0

@
Z

⌦

kf(x)kp dx

1

A

1
p

.

L
p is a normed linear space, if there is no distinction between functions that are equal almost

everywhere, that is, they di↵er on a set of Lebesgue measure zero (null set) [Lue69].

Definition A.5 (The space L
1) The space L

1(⌦) is defined as the space of all Lebesgue

measurable functions on ⌦, which are bounded, except possibly on a null set. Two functions

are considered equivalent if they are equal almost everywhere (a.e.).

In other words, f 2 L
1(⌦) can be regarded as the set

f =
�
g : g = f a.e.

 
.
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The value sup
x2⌦ kf(x)k is di↵erent for di↵erent functions, which are equivalent to f . Therefore,

the norm of a function f 2 L
1 is defined as the essential supremum of kf(x)k, that is,

kfk1 := ess sup
x2⌦

kf(x)k := inf
g(x)=f(x) a.e.

⇢
sup
x2⌦

g(x)

�
.

Remark A.1 The space L
p
, 1  p  1 is a Banach space, that is, a complete normed vector

space [Lue69].

81



Chapter A. Mathematical Definitions

82



APPENDIX B

Introduction to Continuation Processes

In many practical applications, iterative processes

x
k+1 = �(x

k
)

are employed to obtain numerical solutions to a considered problem. Su�ciently well condi-

tioned initial values are required by a majority of these iteration processes. Especially in case

of higher-dimensional problems, it is almost impossible to find a good initial value to start the

iteration.

Continuation processes represent one possible way to solve this problem. Since a continuation

process is employed in this thesis, its basic idea according to [RD83] is introduced in the

following.

B.1 Basic Idea

Continuation processes represent a class of methods solving the problems of iterative processes.

This is due to the fact that they are global and under some conditions exhaustive, which means

that the initial value is not required to be close to the true solution. The main idea of a

continuation method can be described as follows. A given problem

G(x) = 0

is embedded into a parameterized family of problems

G
�
(x) = 0 , 0  �  1 ,

where the solution for G0(x) = 0 is easy to obtain. The parameterization transforms the

problem G0(x) = 0 into the original problem

G1(x) = 0 , G(x) = 0 ,

where the solution to the transformed problem is calculated at each step of the transformation.
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B.2 Formal Definition and Construction of Continuation Processes

Definition B.1 (Continuation process) Let two topological spaces1
X, Y , and a problem

P = (G, U) be given, where U ✓ Y and G : X ! Y . A solution to the problem P is a

point x 2 X with G(x) 2 U . Then, a continuation process is defined as a continuous mapping

H : X ⇥ [0, 1] ! Y satisfying

1. H(x, 1) = G(x).

2. There exists at least one x0 2 X with H(x0, 0) 2 U .

3. There exists a continuous curve � ✓ X ⇥ [0, 1] such that � = (x(�), �) is a solution to

H( · , · ) 2 U for all � 2 [0, 1] with (x(0), 0) = (x0, 0).

4. The space X ⇥ [0, 1] has a di↵erential structure, in which case the curve (x(�), �) is

di↵erentiable.

To construct a continuation process H for a problem P , the main di�culties arise in satisfying

the conditions 3 and 4 of Definition B.1. Examples and more detailed information are given

in [RD83].

When the curve � is obtained, two classes of methods can be employed to follow this curve,

that is, discrete and continuous methods.

In case of discrete methods, the unit interval [0, 1] is partitioned into finitely many subintervals

[�i, �i+1], i = 0, . . . , N � 1. Then, a chain of problems

H(x(�i), �i) = 0 , 0 = �0  . . .  �N = 1 ,

is obtained and solved iteratively. Starting from a known solution H(x(0), 0), x
i+1 is calculated

by means of a local iteration scheme, where the solution x
i

of the previous subinterval is

employed as the initial guess of the current interval. The main theoretical problem is to

determine conditions on H, which ensure that such a partition of the unit interval and an

iterative process � exist, such that x
i
is in the domain of attraction of x

i+1 = �(x
i
, �i).

The second method to apply a continuation process is the continuous Davidenko’s method.

The main idea is to di↵erentiate H(x(�), �) = 0 with respect to the homotopy parameter �.

Then, Davidenko’s di↵erential equation

dH (x(�), �)

d�
=

@H (x(�), �)

@x

dx

d�
+

@H (x(�), �)

@�
= 0 (B.1)

is obtained. Together with the initial condition x(0) = x0, this initial value problem can be

solved by numerical integration from 0 to 1. The desired solution is obtained for � = 1.

In both the discrete and the continuous method, it may happen that the curve � crosses

singularities of @H

@x
, which can be treated in di↵erent ways, for instance by parameterizing the

1 The definition of a topological space is given in appendix A.3.
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curve � appropriately or by selecting a suitable function H (x(0), 0). The advantage of the

continuous variant of the curve follower is that it coincides with the integration of an initial

value problem. However, a large number of points may be necessary to trace the curve � from

0 to 1 [RD83].

In this thesis, the discrete variant of the curve follower has been employed. Similar to [TJ79],

a continuation method is applied to the optimal control problem for a two-point boundary-

value problem, where the process is initialized by a linear problem for � = 0. For � = 1, the

original nonlinear control problem is obtained. In contrast to [TJ79], a discrete-time system is

considered, which su↵ers from the influence of additive noise.
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APPENDIX C

Linear Quadratic Control

Referring to [Ber00a] and [Fai98], in this part, the optimal linear state-feedback control for the

linear system

x
k+1 = Akxk

+ Bkuk
+ w

k
, k = 0, . . . , N � 1 , (C.1)

is derived. Equation (C.1) can be rewritten as

x
k+1 =

h
Ak Bk

i "x
k

u
k

#
+ w

k
, (C.2)

where the state is given by x
k
2

n, and u
k
2

m denotes the control variable. Ak and Bk

are given matrices of appropriate dimensions. The disturbances w
k

are independent zero-mean

random vectors with given probability distributions that depend neither on x
k

nor on u
k
. In

the following, the quadratic cost function

V (x0) = E
wk

k=0,...,N�1

"
xT

N
QNx

N
+

N�1X

k=0

xT
k
Qkxk

+ u
T
k
Rkuk

#
(C.3)

is considered, which minimizes the output of the system (C.2). The matrices Qk are assumed

to be symmetric and positive semidefinite, the matrices Rk are assumed to be symmetric and

positive definite. Employing (C.2), the quadratic cost of x
k+1 is given by

xT
k+1Qk+1xk+1 =

 h
x

T
k

u
T
k

i "AT
k

BT
k

#
+ wT

k

!
Qk+1

 h
Ak Bk

i "
x

k

u
k

#
+ w

k

!

=

 h
x

T
k

u
T
k

i "AT
k
Qk+1Ak AT

k
Qk+1Bk

BT
k
Qk+1Ak BT

k
Qk+1Bk

#"
x

k

u
k

#!

+

 
wT

k
Qk+1

h
Ak Bk

i "
x

k

u
k

#!
+

 h
x

T
k

u
T
k

i "AT
k

BT
k

#
Qk+1wk

!

+ wT
k
Qk+1wk

. (C.4)

Calculation of the expectation value of (C.4) yields

E
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(C.5)
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because of the zero-mean of w
k
. Applying dynamic programming to minimize (C.3), the

recursively defined value functions for each time step from N to 0 are given by

JN(x
N

) = x
T
N
QNx

N

Jk(xk
) = min

uk

✓
x

T
k
Qkxk

+ u
T
k
Rkuk

+ E
wk
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xT
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⇤◆
. (C.6)

Insertion of (C.5) into (C.6) leads to the value function
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(C.7)

To satisfy the necessary minimum condition, the roots of the partial derivative of (C.7) with

respect to u
k

have to be found, that is,

h
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. (C.8)

With this minimum condition, the optimal solution u
⇤
k

is given by

u
⇤
k

= �
�
Rk + BT

k
Qk+1Bk

��1
BT

k
Qk+1Akxk

. (C.9)

Although this equation already yields the optimal control, an interesting property of the optimal

feedback gain can be seen, when going to the last time step, that is, the first step of the dynamic

programming algorithm. Therefore, let k = N � 1. Then, from (C.9) it follows that

u
⇤
N�1 = �

�
RN�1 + BT

N�1QNBN�1

��1
BT

N�1QNAN�1xN�1 . (C.10)

Substitution of (C.10) into (C.6) for k = N � 1 yields

JN�1(xN�1) = x
T
N�1KN�1xN�1 + E
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that is,
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. (C.11)

The matrix KN�1 is given by

KN�1 = AT
N�1

⇣
QN �QNBN�1

�
BT

N�1QNBN�1 + RN�1

��1
BT

N�1QN

⌘
AN�1 + QN�1 .

(C.12)
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Moreover, KN�1 is symmetric and positive semidefinite, which follows from (C.11) and the

assumptions on QN�1,QN , and RN�1. Therefore, JN�1 is positive semidefinite and quadratic1.

Hence, a recursion

KN = QN ,

Kk = AT
k

⇣
Kk+1 �Kk+1Bk

�
BT

k
Kk+1Bk + Rk

��1
BT

k
Kk+1

⌘
Ak + Qk , k = N � 1, . . . , 0 ,

(C.13)

Lk =
�
BT

k
Kk+1Bk + Rk

��1
BT

k
Kk+1Ak , k = N � 1, . . . , 0 ,

u
⇤
k

= µ
k
(x

k
) = �Lk(xk

) , k = N � 1, . . . , 0 , (C.14)

can be defined to determine the optimal state-feedback control law for k = N � 1, . . . , 0 Then,

the value of the value function just depends on the initial state, the noise term w
k
, and the

matrices Kk. Thus,

J(x0) = x
T
0 K0x0 +

N�1X

k=0

E
wk

⇥
wT

k
Kk+1wk

⇤
.

Remark C.1 Equation (C.13) is called the discrete-time algebraic Riccati equation. If Kk > 0

for all symmetric positive definite matrices Qk > 0, Kk is unique, asymptotically stabilizing,

and solves

AkKk+1A
T
k
�Kk + Qk = 0 . (C.15)

Equation (C.15) is called the discrete-time Lyapunov equation.

1 This property does not hold for nonlinear systems.
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APPENDIX D

Unscented Transformation

D.1 Motivation

To treat nonlinear transformations of random variables, sophisticated analysis is inevitable.

Unfortunately, exact analytic solutions are impossible to obtain in general. One approximation

method to obtain a moment-based description of the density of a nonlinearly transformed

random variable

y = f(x) (D.1)

is the unscented transformation (UT) introduced in [JU96]. Instead of approximating the

nonlinear function f , the density of the random variable x is approximated with a fixed number

of parameters. The main idea to obtain estimates of the mean and the covariance of y and

several properties of this algorithm are discussed in the following, where only the prediction

step is considered, since the filter step of the UT is not employed in this thesis.

Convention. Without loss of generality, in the following, it is assumed that the mean value

of the random variables to be transformed is zero.

D.2 Basic Idea

A set X of p + 1 sampling points Xi of the original density of the random variable x and

corresponding weights !i is generated, which possesses the same mean, covariance, and possibly

higher-order moments as the original density of x. Then, each sampling point Xi of the set X

is nonlinearly transformed onto a set

Y := {Yi : Yi = f(Xi), !i , i = 0, . . . , p}

by means of (D.1) as illustrated by Figure D.1. Mean and covariance of Y can be regarded as

an estimate of the true moments of the random variable y in (D.1).

In contrast to particle filters, the small set of the sampling points to be transformed, the so

called sigma points, is chosen deterministically, such that mean and covariance of the random
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f(X )

X
Y

Figure D.1: Principle of the unscented transformation. A specific set of sampling points is nonlinearly transformed.

The moments of the resulting set of transformed points approximate the true moments of the nonlinearly transformed

random variable.

variable x are matched. Moreover, the set of sigma points is weighted, where negative weights

are possible.1 To provide an unbiased estimate, the weights must satisfy

pX

i=0

!i = 1 . (D.2)

The estimates of mean and covariance of y = f(x) are obtained as described in Algorithm 5.

After the pointwise transformation of all p + 1 points Xi, the mean and the covariance of the

nonlinearly transformed random variable y can be calculated approximately.

Algorithm 5 Unscented transformation

1: function mean and covariance prediction(X0, . . . ,Xp, !0, . . . ,!p, f)

2: for i = 0 to p do

3: Yi = f(Xi) . propagation of the sigma points

4: end for

5: . mean prediction

y = E[y] ⇡ E[Y ] =
pX

i=0

!iYi (D.3)

6: . covariance prediction

⌃y ⇡

pX

i=0

!i (Yi � E[Y ]) (Yi � E[Y ])T (D.4)

7: end function

In case of additive noise in the transformation (D.1), that is,

y = f(x) + w ,

1 Therefore, the samplings do not define a discretized density.
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an additional term has to be incorporated in the calculation of the covariance matrix [XZC06],

which leads to

⌃y ⇡

pX

i=0

!i (Yi � E[Y ]) (Yi � E[Y ])T + ⌃w .

D.3 Accuracy

According to [JU96] and [JU04], this section analyzes the accuracy of the estimates of means

and covariances of a nonlinearly transformed random variable by means of the unscented

transformation.

D.3.1 Mean Value

The mean value of y in (D.1) can be written as

y = E
�

⇥
f(x + �)

⇤
, (D.5)

since the random variable x can be split into a deterministic part, that is x = E
�

[x], and a

stochastic part � with mean 0.2 According to Appendix A.2, Taylor series expansion of (D.5)

around the nominal value x results in

y = f(x) + E
�

" 1X

i=1

1

i!

df(x)

dx

iO

j=1

�

#
= f(x) +

1X

i=1

E
�

"
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df(x)

dx

iO

j=1

�

#
. (D.6)

With the definition

Di

�
f(x) :=

df(x)

dx

iO

j=1

� ,

the expectation value in the sum of (D.6) can be rewritten as

E
�

"
Di

�
f(x)

i!

#
=

1

i!
E
�

2

4
 

nX

j=1

�j

@f(x)

@xj

!i
3

5 , (D.7)

where �j and xj denote the components of the vectors � and x, respectively.

Theorem D.1 If the first k moments of the random variable � and the first k derivatives of

the transformation f are known, the UT-approximation of y by means of

y ⇡

2pX

i=0

!if (Xi) (D.8)

yields correct results up to the k-th order term of (D.6).

Proof. The proof of Theorem D.1 is given in [JU96]. ⇤
2 Without loss of generality, the mean value of � is set to 0.
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Remark D.1 The standard UT-algorithm considers only mean value and covariance to be

captured by the set X . But if higher-order moments of x are known, this knowledge can be

employed to capture higher-order moments. Therefore, the expectation value of x is at least

accurate, but not restricted to second-order terms of the Taylor series expansion of the nonlinear

transformation of x, which is revealed by (D.6). In case of symmetric densities of x, all terms

in (D.6) vanish, which contain odd-order moments.

Example D.1: Influence of the knowledge of derivatives and moments in the UT for n = 2

For n = 2, the inner term of (D.7) can be reformulated by means of the Binomial theorem [BSMM01]

as  
2X

j=1

�j

@f(x)

@xj

!i

=
iX

k=0

✓
i

k

◆
�k

1

✓
@f(x)

@x1

◆k

�i�k

2

✓
@f(x)

@x2

◆i�k

, (D.9)

which is a polynomial of degree two, in both the partial derivative and the term �j. This means,

the calculation of (D.7) requires the knowledge of the first i moments of the random variable � and

the first i derivatives of the function f . ⌅

The set X in the UT matches at least the first two moments of the random variable x. Moreover,

the nonlinear transformation f is known.

D.3.2 Covariance

The covariance of y is defined as

⌃y := Cov(y, y) := E
�

⇥
(y � y)(y � y)T

⇤
, (D.10)

where Taylor series expansion of

y � y = f(x + �)� E
�

⇥
f(x + �)

⇤
(D.11)

yields
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in case of a symmetric density of x. Therefore, (D.10) can be written as
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Theorem D.2 If the first 2k moments of the random variable � and the first 2k derivatives of

the function f are known, the UT-approximation of the covariance ⌃y by means of

⌃y ⇡

pX

i=0

!i

�
y � Yi

� �
y � Yi

�T
(D.14)

yields correct results up to the k-th order term of (D.13).

Proof. The proof of Theorem D.2 can be found in [JU96]. ⇤

Remark D.2 For any set of sigma points satisfying (D.2)–(D.4), the transformed mean and

covariance are calculated correctly to the second-order terms of (D.13), [JU04].

D.4 Incorporation of Knowledge of Higher-Order Moments

Knowledge of higher-order moments can be partially incorporated into the choice of the sigma

point set. Since the maintenance of the full density of a random variable is in general in-

tractable, a su�ciently good and tractable approximation Px is assumed, which captures the

most significant features of the true density, for instance a Gaussian mixture density. In this

case, Px can be used as a basis for a good approximate solution to the nonlinear transformation

problem. Since the sigma point set and the corresponding weights only have to satisfy (D.2)–

(D.4), there exist free parameters, which can be employed to capture higher-order information

partially by minimizing the error of these moments subject to (D.2)–(D.4). The more sigma

points are chosen, the more information can be captured. To satisfy (D.2)–(D.4), at least n+1

a�nely independent sigma points are required for x 2
n [JU02]. This simplex possesses some

degrees of freedom, which can be exploited to minimize the average skew (third moment) of

the density. Since no information about the (a)symmetry of the density is maintained by the

mean and covariance, the density can be skewed in any direction. Therefore, the average er-

ror is minimized if the density is assumed to be symmetric. With increasing dimension, the

influence of higher-order moments becomes more significant than in lower dimensions. Instead

of employing a set of n + 1 sigma points, an extended symmetric set of 2n + 1 sigma points

is proposed in [JU04] to minimize the worst case error due to the skew of the density of x.

According to [JU04], this symmetric set of p + 1 = 2n + 1 sigma points with corresponding

weights for x 2
n is chosen as

X0 = x ,

!0 = !0 (free parameter) ,

Xi = X0 +

✓r
n

1� !0
⌃x

◆

i

,

!i =
1� !0

2n
,
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Xi+n = X0 �

✓r
n

1� !0
⌃x

◆

i

,

!i+n =
1� !0

2n
,

where i = 1, . . . , n.
⇣q

n

1�!0
⌃x

⌘

i

denotes the i-th column of a matrix square root of n

1�!0
⌃x.

The free parameter !0 can be chosen, such that information about higher-order moments of

the random variable x is included [JU04]. For instance, with

!0 =


n + 
,  2 ,

the parameter  scales the third- and higher-order terms of the sigma point set. In case of a

Gaussian density, even some of the fourth-order terms are captured for n +  = 3 [JU02].

With increasing dimension, the radius of the sigma point set increases as well, such that non-

local e↵ects are sampled. Furthermore, the influence of higher-order terms in (D.6) and (D.13)

becomes more significant than in lower dimensions. A scaling algorithm treats this problem by

eliminating higher-order, orientation-dependent e↵ects, whereby the second-order accuracy of

the UT is maintained [Jul02]. This scaling parameter adjusts the distance between the sigma

points. A given sigma point X (k)
i

is moved toward or away from the mean value x
k

= X
(k)
0

according to

X̃
(k)
i

= X
(k)
0 + ↵(X (k)

i
� X

(k)
0 ) .

For ↵ = 1, the original point X (k)
i

is obtained. The corresponding weights have to be modified

to satisfy the preconditions of the UT and are given by

!̃j =

8
<

:

!0+↵
2�1

↵2 for j = 0 ,

!j

↵2 for j 6= 0 .

(D.15)

Remark D.3 The scaled UT keeps the accuracy of the estimated values up to second-order

terms in (D.6) and (D.13), [Jul02]. On the one hand, for small values of ↵, local features of the

density of the considered state can be captured, and the influence of higher-order terms can

be reduced. On the other hand, global features of the density cannot be incorporated in the

calculation. Higher-order terms in the Taylor series expansions (D.6) and (D.13) almost vanish,

if the scaling parameter is small. In case of known higher-order moments, this knowledge cannot

be incorporated in the prediction of mean and covariance, which may lead to worse results

compared to the unscaled variant of the UT. This behavior is demonstrated in Section 4.5 by

means of a scalar example. Therefore, a tradeo↵ between these properties has to be found

depending on the specific application.

D.5 Properties, Limitations, and Extensions

Compared with the extended Kalman filter, the unscented transformation yields good approx-

imations of the mean and covariance of a transformed random variable y = f(x) based on the
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corresponding values of x [JU97, vdMDdFW00, JUDW00, JU04, XZC06, CHL05]. Compared

to the extended Kalman filter, the results are more accurate, since the EKF just linearizes the

function f and does not include information of higher-order derivatives. Therefore, the Taylor

series expansions (D.6) and (D.13) are truncated after the first-order term, when the EKF

is applied. With additional points in the sigma point set, the unscented transformation can

capture and propagate higher-order information of the density [LBS02]. Then, higher-order

errors in the approximation of the transformed density can be minimized. One further advan-

tage of the unscented transformation is that the existence of inverse Jacobians is not necessary

to be guaranteed. Another point is that the unscented transformation can treat arbitrarily

distributed random variables and and arbitrary nonlinear transformations, in principle. The

computational e↵orts of the UT and the EKF are of the same order [JU04]. In contrast to

particle filters, the set of sigma points is small and deterministically chosen as described in

Section D.2. Especially for (but not restricted to) Gaussian random variables, the unscented

transformation is a promising approach and superior to the commonly used extended Kalman

filter [vdMW04].

Unfortunately, a moment-based description of a non-Gaussian density does not give any hints

about the shape of the density or the number of its modes, that is, whether the function is

unimodal (like the Gauss function) or multimodal. Therefore, it will help to approximate the

density of a non-Gaussian random variable x by means of Gaussian mixtures, that is, the

density is approximated by a convex combination of Gaussian functions. This approximation

can be performed for arbitrary densities, since the Gaussian mixture is a universal approxima-

tor [HS05]. Then, the UT can be applied to each component, and the results are weighted to

obtain the desired values, that is mean and covariance, of the transformed random variable.

The main problem is to obtain the desired parameters of each Gaussian components to approxi-

mate the original function su�ciently well. A sophisticated framework to approximate densities

is introduced in [HBR03]. The main idea is to solve the problem for a linear function. After

that, a continuation process with a continuous curve follower is employed to derive a system

of ordinary di↵erential equations to be solved. The solution minimizes the Kullback-Leibler

divergence between the original unknown function and its approximation by means of Gaussian

mixtures.
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APPENDIX E

Splines

E.1 n-Dimensional Cubic Spline

An n-dimensional interpolating cubic spline

S(x) = S(x1, . . . , xn)

is the extension of the one-dimensional case using a tensor product approach [BSMM01].

S(x) = S
i1...in

(x) =
3X

k1=0

· · ·

3X

kn=0

ai1...ink1...kn(x1 � �i1)
k1 · · · (xn � �in)kn , (E.1)

where � = (�i1 , . . . ,�in)T denotes the coordinate vector of each knot. The extension of the

properties (3.38)–(3.41) of the one-dimensional case to the n-dimensional case is straightfor-

ward. Considering linearly independent systems of functions g
i1
(x), . . . , g

in
(x), (E.1) can be

rewritten as

S(x) =
3X

k1=0

· · ·

3X

kn=0

ai1...ing
i1
(x) · · · g

in
(x) . (E.2)

Employing the ⌦-operator introduced in Appendix A.1, (E.2) can be written as

S(x) = A⌦ g
i1
(x)⌦ · · ·⌦ g

in
(x) ,

where A 2 ( 4)n denotes the tensor of the coe�cients from (E.2).

E.2 Example of the Error Bound of a Scalar Cubic Spline Interpolant

In Subsection 3.1.6, an error bound for a cubic spline interpolant has been derived. This error

bound is calculated on the basis of system (4.1) in the following.

With

f(xk, uk) = sin(q xk) + uk (E.3)
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and

gN(xN) = (xk � c)2 (E.4)

gk(xk, u
⇤
k
) =

1

2
(xk � c)2 +

1

2
a (u⇤

k
)2

, (E.5)

where c = 0 and a = 2, it follows that

@
2
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2
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@f

@xk

= q cos(q xk)
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2
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@x
2
k

= �q
2 sin(q xk)

dJ
spline

k+1

dxk+1
= 3ai(xk+1 � �i)

2 + 2bi(xk+1 � �i) + ci

d2
J

spline

k+1

dx
2
k+1

= 6ai(xk+1 � �i) + 2bi

and
����
@

2
Jk

@x
2
k

����
1

��1 + (6ai(xk+1 � �i) + 2bi) q

2 cos(q xk)
2

�
�
3ai(xk+1 � �i)
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�
q
2 sin(q xk)

��
1
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��1 + q

2
⇥
(6ai(xk+1 � �i) + 2bi) cos(q xk)

2

�
�
3ai(xk+1 � �i)

2 + 2bi(xk+1 � �i) + ci

�
sin(q xk)

⇤��
1

Considering the maximal values of sine and cosine, it follows that

����
@

2
Jk

@x
2
k

����
1

��1 + q

2
⇥
6ai(xk+1 � �i) + 2bi � 3ai(xk+1 � �i)

2 + 2bi(xk+1 � �i) + ci

⇤��
1 .

Due to the piecewise definition of the cubic spline, the maximal interval length is defined as

kxk+1 � �ik1  max
j

�j+1 � �j =: h . (E.6)

Then, with (E.6) it holds that

����
@

2
Jk

@x
2
k

����
1
 (1 + q

2)
��h2 (�3 ai) + h (6 ai � 2 bi) + 2 bi + ci

��
1 .

Employing the triangular inequality for norms, a new upper bound for the second derivative of

the value function is given by

����
@

2
Jk

@x
2
k

����
1
 (1 + q

2)
�
h

2
|3 ai|+ h (|6 ai|+ |2 bi|) + |2 bi + ci|

�
=: C . (E.7)
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Therefore, an upper bound for the error between the value function and its spline approximation

is given by

k(Jspline

k
� Jk)

(0)
k1

(3.43)

 "20kf
(2)
k1h

2�0 + K2�0
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(E.7)
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The remaining problem is to find an upper bound for the value

R = max
n
kJ

(2)
k

(�0)� (Jspline

k
)(2)(�0)k, kJ

(2)
k

(�N)� (Jspline

k
)(2)(�N)k

o
.

Because of that, an expression for R will be derived. Moreover, the resulting error bound

converges to zero with order four for h ! 0. Since

R  k(Jk � J
spline

k
)(2)
k1 , (E.9)

(3.43) can be applied to (E.9). Therefore,

R k(Jk � J
spline

k
)(2)
k1

r=2=m
= "22kJ

(2)
k
k1 + K2�2(2

1�j
� 21�N+j) h

(E.7)
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6 h

�xj

�
21�j

� 21�N+j
�

.

Thus, the inequality

R

✓
1�

6

�xj

h
�
21�j

� 21�N+j
�◆
 C

✓
10 +

30

2�xj

h
�
21�j

� 21�N+j
�◆

for R can be derived. Because of that,

|R| 

������

C

⇣
10 + 15

�xj
h
�
21�j

� 21�N+j
�⌘

1� 6
�xj

h (21�j � 21�N+j)

������
=: D . (E.10)

With (E.10), (E.8) can be evaluated, and it can be seen that (E.8) is a function, which is

quadratic in h, since

�xj  h .

Therefore, the limit of h ! 0 yields the result

k(Jspline

k
� Jk)k1 2 O(h2) , h ! 0 , (E.11)

which coincides with the result in [Hal73]. But in contrast to [Hal73], an approximation error

for the considered system is presented, which can be calculated without taking the limit.
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APPENDIX F

Implementation Details

In this chapter, the main structure of the program code is described, and specific chosen pa-

rameters are mentioned. The algorithms are implemented in Matlab 7.1 [Mat05]. In case of

examples for several steps, the system

xk+1 = sin(q xk) + uk + wk ,

which is described in detail in Chapter 4, is employed.

Convention. This chapter is restricted to the scalar case to simplify imagination. Moreover,

the systems are simulated for a scalar case.

The procedure simulating the system is implemented in system sim.m. After determining the

N -step finite horizon window, MPC is performed until a predefined end time sim time, when

the simulation is stopped.

Algorithm 6 System simulation

procedure system sim(x̂0, horizon, �w, sim time)

N = horizon . length of finite horizon window for MPC

for k = 0 to sim time do

state init = x̂k . initial state of current simulation step

. call continuation function

u init sequence(k : k + N � 1)=continuation(state init, horizon, stepsize,�w)

. call spline based algorithm

u
⇤
k
=update control main(u init sequence(k : k + N � 1), state init, �w)

xk+1 = f(x̂k, u
⇤
k
) + wk . successor state

end for

end procedure

The parameter �w denotes the standard deviation of the noise a↵ecting the system. Starting

from the initial value x̂0, the optimal control sequence of the initial solution is obtained by

103



Chapter F. Implementation Details

means of a continuation process with a discrete curve follower as explained in Algorithm 6. The

parameter stepsize has to be chosen, such that the minimization algorithm converges, invoked

by the continuation function. That control sequence is employed in the improving algorithm

as described in Algorithm 4 in Section 3.2.5. Finally, the system state xk+1 is determined,

depending on the current state x̂k, the optimal state-feedback control u
⇤
k
, and the random noise

wk. After the time update, the state xk is directly accessible and needs not to be estimated.

F.1 Application of the Minimum Principle

F.1.1 Continuation Process

In continuation.m, the continuation process is implemented, which deforms the linear into

the nonlinear system by means of a discrete curve follower, that is, a discrete sequence of

homotopy parameters �i. The di↵erence between subsequent homotopy parameters is given

by the parameter stepsize = 0.01, which was chosen in Algorithm 6 (system sim.m). The

employment of a continuation process is necessary, since the optimal solution to the nonlinear

problem strongly depends on the initial value. If the solution of the previous continuation step

serves as the initial guess of the next step, numerical instability of the subsequent minimization

algorithm is reduced.

F.1.2 Minimization

The minimization function can be found in opt ctrl iteration2.m. A quasi-Newton algo-

rithm is used at each step of the transformation of the homotopy to solve the nonlinear equation

system (3.49), which depends on the homotopy parameter �. The algorithm works as described

in Algorithm 7. After the initialization in lines 2–3, it is checked, whether the initial solution is

already close enough to the desired solution of the nonlinear equation system (3.49) for the cur-

rent value of �. If yes, the initial value will be returned to the calling function continuation.m.

Otherwise, the iteration scheme starts. The Jacobian matrix is approximated by means of fi-

nite di↵erences, [SB02], in line 10. After that, this approximation is decomposed by means of

the QR decomposition in line 11, such that an update �u of U can be computed. Here, the

Matlab built-in function qr.m of has been employed. The update of the augmented vector

U is given in line 14. After the determination of the updated vector F and the quality check,

either the updated solution U is returned to the invoking function or the iteration is continued.

If the iteration does not converge after MaxIt steps, an error message is displayed, and the

last vector U is returned. This self-implemented scheme1 performs su�ciently fast. However, if

numerical problems arise, that is, Algorithm 7 does not converge, the almost identical function

mmfsolve.m by Hanselmann [Han06] is employed, which is slower, but numerically more sta-

ble. The accuracy of both functions is similar. The di↵erence between both functions is that

1 opt ctrl iteration2.m
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Algorithm 7 Implemented quasi-Newton method

1: function opt ctrl iteration(U⇤(��))

2: tolF = 10�8
. threshold for nonlinear equation system

3: MaxIt = 20 . stop after MaxIt iterations

4: F=EQS(U⇤(��)) . build the equation system

5: if norm(F < tolF ) then . if initial value su�ciently close to solution

6: return(U⇤(��)) . return initial value

7: else

8: U = U
⇤(��)

9: for i = 1 to MaxIt do . start iteration

10: Jac=Finite Diff(U, F ) . finite di↵erence approximation of Jacobian

11: [Q,R]=qr(Jac) . QR decomposition of Jac

12: y tmp = �QT
F

13: �u = R \ y tmp . solve RT�u = y tmp

14: U = u + (�u)T
. update of U

15: F=EQS(U⇤(��)) . build the equation system

16: if norm(F < tolF ) then . if initial value su�ciently close to solution

17: return(U) . return updated value

18: end if

19: end for

20: print(‘not converged’) . error message

21: return(U) . return last value

22: end if

23: end function

mmfsolve.m does not employ the Matlab built-in function qr.m, but a more sophisticated QR

decomposition.

After the solution of the nonlinear equation system for � = 1, the solution to the original

nonlinear problem is obtained. This control sequence is returned to the function system sim.m.

After that, this initial guess is employed by the second part of Algorithm 6, which can be found

in update control main.m.

F.2 Application of Dynamic Programming Based on Interpolation of the

Value Function

F.2.1 Mean- and Covariance Prediction

Employing the open-loop control sequence of the previous section, the mean values and the

corresponding covariances of the successor states of x0 are predicted by means of the unscented

transformation, which is explained in more detail in Appendix D.
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Parameters of the Unscented Transformation

Distance of the Sigma Points. According to (4.11), the implementation employs a scaling

parameter ↵ = 1 , that is, the unscaled unscented transformation, to determine the sequences

of means and covariances of the initial state x̂0 approximately. This parameter is chosen, since

all moments and central moments of the transformed Gaussian distribution can be determined

recursively [HS05]. Therefore, the weight !0 is chosen to capture the kurtosis of the Gaussian

to improve the accuracy of the UT as explained in Appendix D.

Weights of the Sigma Points. According to Section 3.2.3, the parameter , which ensures

higher accuracy of the predicted means and covariances, is chosen as

 =

8
<

:
3� n for k = 1, 2 ,

3� n�
|3�n|

N
k + 1

2 for k > 2 .

for the k-th prediction step of an N -step horizon. Then,  approaches 1
2 , such that at time step

N all sigma points are equally weighted to capture more information of the distribution in the

regions, which are not close to the mean value. This choice is a contribution to the unknown

shape of the unknown densities of the successor states xk+1, k > 2.

F.2.2 Definition of the Grid

The file mean propagation.m performs those predictions and returns the corresponding values

to update control main.m. Around the mean values, an adaptive grid is defined. Depending

on the variances �
x

k
of the successor states xk of the initial state x̂0, a state space discretization

Pk of seven points is defined around the mean values xk as

Pk :=

⇢
xk �

3

2
�

x

k
, xk �

3

4
�

x

k
, xk �

3

8
�

x

k
, xk, xk +

3

8
�

x

k
, xk +

3

4
�

x

k
, xk +

3

2
�

x

k

�
, (F.1)

which realizes (3.37). The grid Ginit

k
is a modification of Pk and determined as follows. Assuming

that the desired target point c lies within the area of interest after k � 3 steps2, the nearest

neighbor of the target point is replaced by c. To keep the symmetry of Pk, the symmetric

counterparts of the substituted point are also replaced by the mirrored point c. That is, the

points

{xk ± |xk � c|}

replace their nearest neighbors in Pk. The recently obtained set is denoted by G
init

k
.

Figure F.1 shows the sequence of mean values and the corresponding area of interest, that is,

the area covered by the initial grid G
init

k
, k = 0, . . . , N , depending on the covariances of the

states xk. The goal is to interpolate the value function within this area of interest.

2 heuristically chosen for system (4.1)
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Figure F.1: Grid area around the predicted mean values of the successor states of x̂0 = �1 for � = 0.1. The mean

values and the corresponding covariances of the successor states xk of x̂0 are calculated by means of the unscented

transformation. Around the mean values, this initial grid is defined, whose spread depends on the covariance of the

states.

Introduction of a Bu↵er to Stabilize the Spline Interpolation

To stabilize the spline interpolation on Ginit

k
, an extended grid Gext

k
is introduced, which contains

two additional dummy points at each extremal point of Ginit

k
, that is

G
ext

k
= G

init

k
[

⇢
min(Ginit

k
)� 3�w, min(Ginit

k
)�

3

2
�w, max(Ginit

k
) +

3

2
�w, max(Ginit

k
) + 3�w

�
,

(F.2)

where min(Ginit

k
) and max(Ginit

k
) denote the extremal points of Ginit

k
in the considered scalar

case. It is noteworthy that the choice of these dummy points depends on the noise standard

deviation �w. Altogether, Gext

k
contains 11 grid points in the scalar case. The sets Ginit

k
and

G
ext

k
\ G

init

k
are shown in Figure F.2.

F.2.3 Spline Interpolation of the Value Function

After the determination of Ginit

k
and G

ext

k
for k = 0, . . . , N , the value function

JN(xN) = (xN � c)2

is piecewisely interpolated by means of cubic splines in the range of Gext

N
, where the Mat-

lab built-in function spline.m has been employed.

For all grid points x
(j)
k+1 2 G

init

k+1, the value Ewk
[Jk+1(x

(j)
k+1)] is determined by means of numerical

integration in the range of the extended grid G
ext

k
, where the Matlab built-in function quad.m

has been employed.

Remark F.1 At this point, it is important to emphasize the importance of the extended grid

G
ext

k
, which stabilizes the spline approximation of the value function Jk. If this extended grid is
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Figure F.2: Extended and initial grid area around the predicted mean values of the successor states of x̂0 = �1

in system (4.1) for � = 0.1. To stabilize the spline interpolation on Ginit
k , a bu↵er of two additional points around

the extremal points of Ginit
k is defined, which is given by Gext

k \ Ginit
k .

not introduced, the calculation of Ewk
[Jspline

k+1 (x(j)
k+1)] will cause problems at the extremal points

of Ginit

k
, since the function has to be extrapolated, which is less accurate than interpolation.

The additional dummy points are chosen, such that the distance of the extremal points of Gext

k

and the extremal points of Ginit

k
is at least 3�w. Therefore, the integration in the range of the

extended grid is almost correct, due to the fact that 99.7% of the area under the Gauss function

are covered.

A set of controls u
(i,j)
k

is determined, which maps a grid point x
(i)
k
2 G

ext

k
onto the grid points

x
(j)
k+1 2 G

init

k
, where the assumption is employed that the successor state of x

(i)
k
2 G

ext

k
lies in the

range of Ginit

k+1, when the optimal state-feedback control is employed. This heuristic assumption

is based on simulations. With the recently determined values u
(i,j)
k

, the expected cost-to-go

from a state x
(i)
k
2 G

ext

k
via a successor state x

(j)
k+1 2 G

init

k+1 is obtained by

Vk(x
(i)
k

, u
(i,j)
k

) := gk(x
(i)
k

, u
(i,j)
k

) + E
wk

[Jspline

k+1 (x(j)
k+1)] .

This cost function is restricted to the grid points of Gext

k
and G

init

k+1. Spline interpolation along

the values u
(i,j)
k

, j = 1, . . . , 7, yields a function V
spline

k
(x(i)

k
, uk), which is continuous in uk.

Subsequent minimization of this function (with respect to uk) yields the minimal expected

cost-to-go starting from x
(i)
k

, where the possible successor states cover the area of interest, that

is Ginit

k+1.

Remark F.2 Due to the spline interpolation with respect to the control variable uk, the

algorithm approximately treats an optimal control problem with continuous control variables.

The minimization of V
spline

k
(x(i)

k
, uk) with respect to uk is performed as explained in detail in

Section 3.2.5 and yields Jk(x
(i)
k

) for x
(i)
k
2 G

ext

k
.

The final spline interpolation of Jk(x
(i)
k

) with knots x
(i)
k

yields an approximate, continuous (in

xk) description of the value function in the range of Gext

k
.
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Remark F.3 Due to the spline interpolation with respect to the state variable xk, the algorithm

approximately treats an optimal control problem with continuous states.

In Algorithm 8, the proposed improvement of the initial solution is summarized.

Algorithm 8 Dynamic programming based on interpolation of the value function on an

adaptive grid
1: function update control main(x̂0, û0, . . . , ûN�1, �w)

2: mean propagation(x̂0, û0, . . . , ûN�1, �w) . mean and covariance prediction (UT)

3: for k = 0 to N do

4: determine Ginit

k
. area of interest

5: determine Gext

k
. bu↵er around area of interest

6: end for

7: . spline interpolation (x) of value function in the area of Gext

N

8: J
spline

N
(xN):=spline(

n⇣
x

(j)
N

, JN(x(j)
N

)
⌘o11

j=1
)

9: for k = N � 1 to 0 do

10: for j = 1 to 7 do . for all grid points in G
init

k+1

11: determine E
wk

[Jspline

k+1 (x(j)
k+1)] . expected cost-to-go from G

init

k+1 (integration)

12: end for

13: for i = 1 to 11 do . for all grid points in G
ext

k

14: for j = 1 to 7 do . for all grid points in G
init

k+1

15: determine u
(i,j)
k

with x
(j)
k+1 = E

wk

[f(x(i)
k

, u
(i,j)
k

) + wk] . u
(i,j)
k

maps x
(i)
k

onto x
(j)
k+1

16: Vk(x
(i)
k

, u
(i,j)
k

) := gk(x
(i)
k

, u
(i,j)
k

) + E
wk

[Jspline

k+1 (x(j)
k+1)] . cost function for x

(i)
k
2 G

ext

k

17: end for

18: . spline interpolation (u) of cost function in the range of Gext

k

19: V
spline

k
(x(i)

k
, uk) := spline (

n⇣
u

(i,j)
k

, Vk(x
(i)
k

, u
(i,j)
k

)
⌘o7

j=1
)

20: Jk(x
(i)
k

) = min
uk

V
spline

k
(x(i)

k
, uk) . minimization

21: u
⇤
k

= arg min
uk

V
spline

k
(x(i)

k
, uk) . optimal state-feedback control

22: end for

23: . spline interpolation (x) of value function in the area of Gext

k

24: J
spline

k
(xk) := spline (

n⇣
x

(i)
k

, Jk(x
(i)
k

)
⌘o11

i=1
)

25: end for

26: return(u⇤0) . return updated control variable to system sim.m

27: end function

F.3 Dynamic Programming on a Static Grid

The dynamic programming algorithm on a static grid is implemented as follows. After the

determination of the finite sets of 250 system states and 300 control variables, a deterministic,
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that is, in this case boolean, transition tensor T 2 {0, 1}250⇥250⇥300 is determined, where

T(i, j, t) = 1 :, x
(j) = f(x(i)

, u
(t)) , (F.3)

where x
(i) denotes a grid point of the time-invariant discretization of the state space, and u

(t)

denotes a grid point of the time-invariant set of discretized control variables. That is, the first

dimension of T denotes the current state, the second dimension the successor state, and the

third dimension the control variable, respectively. The projection onto the xk, xk+1-plane of

the tensor T is depicted in Figure F.3, where a fixed control is chosen. Due to the structure of

−1

−0.5

0

0.5

1
−1 −0.5 0 0.5 1

xk !

x
k
+

1
!

Figure F.3: Transition tensor for system (4.1) with � = 0.1 for a fixed control variable. The boolean values reveal

the unique successor states of xk.

the corresponding system function, the boolean matrix looks like the mirrored system function.

The binary values uniquely describe the successor states of xk in the discretized region of the

state space. After the determination of T, the noise density, that is, the Gauss function, is

discretized within the considered part of the state space according to

N(x(i)) :=
1

p
2 ⇡ �

x
(i)+ d

2Z

x(i)� d
2

e
� 1

2
x2

�2 dx (F.4)

for all grid points x
(i). The resulting discretized Gaussian is given by a vector containing

the values of (F.4), which is shown in Figure F.4. The stochastic transition tensor3 Tw, which

incorporates the noise influence, is given by the convolution of each row of T with the discretized

Gaussian vector, when a control variable u
(i) is fixed. That is,

Tw( : , : , i) = T( : , : , i) ⇤N(x) .

For a fixed control variable, the discretized transition density Tw is plotted in Figure F.5.

Due to the noise influence, each deterministic successor state defined in (F.3) is replaced by a

non-trivial density of successor states. For x1 2
n and x2 2

m

x1 ⇤ x2 2
n+m�1

.

3 the discretized transition density
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Figure F.4: Discretized Gaussian in case of system (4.1) for � = 0.1.
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Figure F.5: Discretized transition density for a fixed control variable. Due to the influence of noise, a non-trivial

distribution of the successor states of a grid point is given.
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Since the resulting vector should possess the same dimensions as the original vector, the borders

have to be quantized, which explains the peaks at the borders of the considered region of the

state space in Figure F.5.

After these initializing steps, the expected cost-to-go at time step k for the state x
(i) and the

control variable u
(t) is determined as

Vk(i, t) =
1

2
(x(i)

� c)2 +
1

2
a(u(t))2 +

250X

j=1

Tw(i, j, t) · Jk+1(x
(j)) , (F.5)

where the summation weights the expected cost-to-go of the distribution of the successor states.

Moreover, it is assumed that Jk+1 has already been determined by the DP algorithm, that is,

Algorithm 1. The value function for x
(i) is given by the minimum

Jk(x
(i)) = min

t

Vk(i, t)

of (F.5). The value function within the range of the restricted region of the state space for

all time steps is shown in Figure F.6. With increasing prediction horizon, the value function

becomes more complex, starting from a quadratic function at time step 5, where the incurring

cost is just the terminal cost.
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Figure F.6: Minimal expected cost-to-go for all time steps of the decision-making horizon. For system (4.1) with

� = 0.1, the horizon is set to N = 5 steps. The minimal expected cost-to-go for x̂0 is given for k = 0.

The minimizing control variable u
(t) is stored in a look-up table U. After performing this min-

imization for all states, this look-up table contains the optimal control state-feedback controls

for all states and all time steps. This calculation can be performed o✏ine. During the simula-

tions, only the entries of the look-up table U are needed. Since MPC is implemented, only the

entries for the full horizon length are accessed during the simulations.
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